973 research outputs found

    Performativity and the 'True/False Fetish'

    Get PDF

    Deontic Trouble in Speech Act Botany

    Get PDF

    Addendum to “Self-Reference and the Divorce Between Meaning and Truth”

    Get PDF
    This paper is an addendum to [Tsohatzidis, 2013

    Sequential Detection and Identification of a Change in the Distribution of a Markov-Modulated Random Sequence

    Get PDF
    The problem of detection and identification of an unobservable change in the distribution of a random sequence is studied via a hidden Markov model (HMM) approach. The formulation is Bayesian, on-line, discrete-time, allowing both single- and multiple- disorder cases, dealing with both independent and identically distributed (i.i.d.) and dependent observations scenarios, allowing for statistical dependencies between the change-time and change-type in both the observation sequence and the risk structure, and allowing for general discrete-time disorder distributions. Several of these factors provide useful new generalizations of the sequential analysis theory for change detection and/or hypothesis testing, taken individually. In this paper, a unifying framework is provided that handles each of these considerations not only individually, but also concurrently. Optimality results and optimal decision characterizations are given as well as detailed examples that illustrate the myriad of sequential change detection and identification problems that fall within this new framework

    Three Problems for the Knowledge Rule of Assertion

    Get PDF

    Voices and noises in the theory of speech acts

    Full text link

    Using Intervention Mapping to Develop an Efficacious Multicomponent Systems-Based Intervention to Increase Human Papillomavirus (HPV) Vaccination in a Large Urban Pediatric Clinic Network

    Get PDF
    Background: The CDC recommends HPV vaccine for all adolescents to prevent cervical, anal, oropharyngeal, vaginal, vulvar, and penile cancers, and genital warts. HPV vaccine rates currently fall short of national vaccination goals. Despite evidence-based strategies with demonstrated efficacy to increase HPV vaccination rates, adoption and implementation of these strategies within clinics is lacking. The Adolescent Vaccination Program (AVP) is a multicomponent systems-based intervention designed to implement five evidence-based strategies within primary care pediatric practices. The AVP has demonstrated efficacy in increasing HPV vaccine initiation and completion among adolescents 10-17 years of age. The purpose of this paper is to describe the application of Intervention Mapping (IM) toward the development, implementation, and formative evaluation of the clinic-based AVP prototype. Methods: Intervention Mapping (IM) guided the development of the Adolescent Vaccination Program (AVP). Deliverables comprised: a logic model of the problem (IM Step 1); matrices of behavior change objectives (IM Step 2); a program planning document comprising scope, sequence, theory-based methods, and practical strategies (IM Step 3); functional AVP component prototypes (IM Step 4); and plans for implementation (IM Step 5) and evaluation (IM Step 6). Results: The AVP consists of six evidence-based strategies implemented in a successful sequenced roll-out that (1) established immunization champions in each clinic, (2) disseminated provider assessment and feedback reports with data-informed vaccination goals, (3) provided continued medical and nursing education (with ethics credit) on HPV, HPV vaccination, message bundling, and responding to parent hesitancy, (4) electronic health record cues to providers on patient eligibility, and (5) patient reminders for HPV vaccine initiation and completion. Conclusions: IM provided a logical and systematic approach to developing and evaluating a multicomponent systems-based intervention to increase HPV vaccination rates among adolescents in pediatric clinics

    A Comparative Study of Different Phase Detrending Algorithms for Scintillation Monitoring

    Get PDF
    Rapid and sudden fluctuations of phase and amplitude in Global Navigation Satellite System (GNSS) signals due to diffraction of the ionosphere phase components when signals passing through small-scale irregularities (less than hundreds meters) are commonly so-called ionospheric scintillation. The aim of the paper is to analyze the implementation and compare the performance of different phase detrending algorithms to improve scintillation monitoring. Three different phase detrending methods, namely, three cascaded second-order high pass filters, six order Butterworth filter conducted by cascading six first-order high pass Butterworth filters, and Fast Iterative Filter (FIF) are considered in this paper. The study exploits real GNSS signals (GPS L1, Galileo E1b) affected by significant phase scintillation effects, collected in early September 2017 at Brazilian Centro de Radioastronomia e Astrofisica Mackenzie (CRAAM) monitoring station and at Adventdalen (Svalbard, Norway) research station. In this study, a software defined radio (SDR) based GNSS receiver is used to process GNSS signals and to implement the aforementioned detrending algorithms

    Experimental predictions from technicolor theories

    Full text link
    We calculate detailed predictions for masses, decay branching ratios, and production cross sections for new dynamical bosons expected as physical particles in a technicolor theory. The colored technieta state has a significant production cross section at Isabelle or the Tevatron collider. Light, neutral, spin-zero axions are expected, and also charged, spin-zero, axions (analogous to charged Higgs bosons) with mass 8 GeV. The latter should be seen at PETRA/PEP.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/24394/1/0000664.pd
    • …
    corecore