37 research outputs found
Citraconate inhibits ACOD1 (IRG1) catalysis, reduces interferon responses and oxidative stress, and modulates inflammation and cell metabolism
Although the immunomodulatory and cytoprotective properties of itaconate have been studied extensively, it is not known
whether its naturally occurring isomers mesaconate and citraconate have similar properties. Here, we show that itaconate
is partially converted to mesaconate intracellularly and that
mesaconate accumulation in macrophage activation depends
on prior itaconate synthesis. When added to human cells in
supraphysiological concentrations, all three isomers reduce
lactate levels, whereas itaconate is the strongest succinate
dehydrogenase (SDH) inhibitor. In cells infected with influenza A virus (IAV), all three isomers profoundly alter amino
acid metabolism, modulate cytokine/chemokine release and
reduce interferon signalling, oxidative stress and the release
of viral particles. Of the three isomers, citraconate is the
strongest electrophile and nuclear factor-erythroid 2-related
factor 2 (NRF2) agonist. Only citraconate inhibits catalysis of
itaconate by cis-aconitate decarboxylase (ACOD1), probably
by competitive binding to the substrate-binding site. These
results reveal mesaconate and citraconate as immunomodulatory, anti-oxidative and antiviral compounds, and citraconate
as the first naturally occurring ACOD1 inhibitor
Citraconate inhibits ACOD1 (IRG1) catalysis, reduces interferon responses and oxidative stress, and modulates inflammation and cell metabolism
Although the immunomodulatory and cytoprotective properties of itaconate have been studied extensively, it is not known whether its naturally occurring isomers mesaconate and citraconate have similar properties. Here, we show that itaconate is partially converted to mesaconate intracellularly and that mesaconate accumulation in macrophage activation depends on prior itaconate synthesis. When added to human cells in supraphysiological concentrations, all three isomers reduce lactate levels, whereas itaconate is the strongest succinate dehydrogenase (SDH) inhibitor. In cells infected with influenza A virus (IAV), all three isomers profoundly alter amino acid metabolism, modulate cytokine/chemokine release and reduce interferon signalling, oxidative stress and the release of viral particles. Of the three isomers, citraconate is the strongest electrophile and nuclear factor-erythroid 2-related factor 2 (NRF2) agonist. Only citraconate inhibits catalysis of itaconate by cis-aconitate decarboxylase (ACOD1), probably by competitive binding to the substrate-binding site. These results reveal mesaconate and citraconate as immunomodulatory, anti-oxidative and antiviral compounds, and citraconate as the first naturally occurring ACOD1 inhibitor. [Image: see text
A Novel Peptide ELISA for Universal Detection of Antibodies to Human H5N1 Influenza Viruses
BACKGROUND: Active serologic surveillance of H5N1 highly pathogenic avian influenza (HPAI) virus in humans and poultry is critical to control this disease. However, the need for a robust, sensitive and specific serologic test for the rapid detection of antibodies to H5N1 viruses has not been met. METHODOLOGY/PRINCIPAL FINDINGS: Previously, we reported a universal epitope (CNTKCQTP) in H5 hemagglutinin (HA) that is 100% conserved in H5N1 human isolates and 96.9% in avian isolates. Here, we describe a peptide ELISA to detect antibodies to H5N1 virus by using synthetic peptide that comprises the amino acid sequence of this highly conserved and antigenic epitope as the capture antigen. The sensitivity and specificity of the peptide ELISA were evaluated using experimental chicken antisera to H5N1 viruses from divergent clades and other subtype influenza viruses, as well as human serum samples from patients infected with H5N1 or seasonal influenza viruses. The peptide ELISA results were compared with hemagglutinin inhibition (HI), and immunofluorescence assay and immunodot blot that utilize recombinant HA1 as the capture antigen. The peptide ELISA detected antibodies to H5N1 in immunized animals or convalescent human sera whereas some degree of cross-reactivity was observed in HI, immunofluorescence assay and immunodot blot. Antibodies to other influenza subtypes tested negative in the peptide-ELISA. CONCLUSION/SIGNIFICANCE: The peptide-ELISA based on the highly conserved and antigenic H5 epitope (CNTKCQTP) provides sensitive and highly specific detection of antibodies to H5N1 influenza viruses. This study highlighted the use of synthetic peptide as a capture antigen in rapid detection of antibodies to H5N1 in human and animal sera that is robust, simple and cost effective and is particularly beneficial for developing countries and rural areas
