176 research outputs found

    Should liver enzymes be checked in a patient taking niacin?

    Get PDF
    No randomized trials directly address the question of frequency of liver enzyme monitoring with niacin use. Niacin use is associated with early and late hepatotoxicity (strength of recommendation [SOR]: B, based on incidence data from randomized controlled trials and systematic reviews of cohort studies). Long-acting forms of niacin (Slo-Niacin) are more frequently associated with hepatotoxicity than the immediate-release (Niacor, Nicolar) or extended-release (Niaspan) forms (SOR: B, based on 1 randomized controlled trial and systematic reviews of cohort studies)

    Molecular basis for functional switching of GFP by two disparate non-native post-translational modifications of a phenyl azide reaction handle

    Get PDF
    Through the genetic incorporation of a single phenyl azide group into superfolder GFP (sfGFP) at residue 148 we provide a molecular description of how this highly versatile chemical handle can be used to positively switch protein function in vitro and in vivo via either photochemistry or bioconjugation. Replacement of H148 with p-azido-L-phenylalanine (azF) blue shifts the major excitation peak ∼90 nm by disrupting the H-bond and proton transfer network that defines the chromophore charged state. Bioorthogonal click modification with a simple dibenzylcyclooctyne or UV irradiation shifts the neutral-anionic chromophore equilibrium, switching fluorescence to the optimal ∼490 nm excitation. Click modification also improved quantum yield over both the unmodified and original protein. Crystal structures of both the click modified and photochemically converted forms show that functional switching is due to local conformational changes that optimise the interaction networks surrounding the chromophore. Crystal structure and mass spectrometry studies of the irradiated protein suggest that the phenyl azide converts to a dehydroazepine and/or an azepinone. Thus, protein embedded phenyl azides can be used beyond simple photocrosslinkers and passive conjugation handles, and mimic many natural post-translational modifications: modulation though changes in interaction networks

    Diversity within the adenovirus fiber knob hypervariable loops influences primary receptor interactions

    Get PDF
    Adenovirus based vectors are of increasing importance for wide ranging therapeutic applications. As vaccines, vectors derived from human adenovirus species D serotypes 26 and 48 (HAdV-D26/48) are demonstrating promising efficacy as protective platforms against infectious diseases. Significant clinical progress has been made, yet definitive studies underpinning mechanisms of entry, infection, and receptor usage are currently lacking. Here, we perform structural and biological analysis of the receptor binding fiber-knob protein of HAdV-D26/48, reporting crystal structures, and modelling putative interactions with two previously suggested attachment receptors, CD46 and Coxsackie and Adenovirus Receptor (CAR). We provide evidence of a low affinity interaction with CAR, with modelling suggesting affinity is attenuated through extended, semi-flexible loop structures, providing steric hindrance. Conversely, in silico and in vitro experiments are unable to provide evidence of interaction between HAdV-D26/48 fiber-knob with CD46, or with Desmoglein 2. Our findings provide insight into the cell-virus interactions of HAdV-D26/48, with important implications for the design and engineering of optimised Ad-based therapeutics

    Human adenovirus type 26 uses sialic acid - bearing glycans as a primary cell entry receptor

    Get PDF
    Adenoviruses are clinically important agents. They cause respiratory distress, gastroenteritis, and epidemic keratoconjunctivitis. As non-enveloped, double-stranded DNA viruses, they are easily manipulated, making them popular vectors for therapeutic applications, including vaccines. Species D adenovirus type 26 (HAdV-D26) is both a cause of EKC and other diseases and a promising vaccine vector. HAdV-D26–derived vaccines are under investigation as protective platforms against HIV, Zika, and respiratory syncytial virus infections and are in phase 3 clinical trials for Ebola. We recently demonstrated that HAdV-D26 does not use CD46 or Desmoglein-2 as entry receptors, while the putative interaction with coxsackie and adenovirus receptor is low affinity and unlikely to represent the primary cell receptor. Here, we establish sialic acid as a primary entry receptor used by HAdV-D26. We demonstrate that removal of cell surface sialic acid inhibits HAdV-D26 infection, and provide a high-resolution crystal structure of HAdV-D26 fiber-knob in complex with sialic acid

    The crystal structure of Bacillus thuringiensis Tpp80Aa1 and its interaction with galactose-containing glycolipids

    Get PDF
    Tpp80Aa1 from Bacillus thuringiensis is a Toxin_10 family protein (Tpp) with reported action against Culex mosquitoes. Here, we demonstrate an expanded target range, showing Tpp80Aa1 is also active against the larvae of Anopheles gambiae and Aedes aegypti mosquitoes. We report the first crystal structure of Tpp80Aa1 at a resolution of 1.8 Å, which shows Tpp80Aa1 consists of two domains: an N-terminal β-trefoil domain resembling a ricin B lectin and a C-terminal putative pore-forming domain sharing structural similarity with the aerolysin family. Similar to other Tpp family members, we observe Tpp80Aa1 binds to the mosquito midgut, specifically the posterior midgut and the gastric caecum. We also identify that Tpp80Aa1 can interact with galactose-containing glycolipids and galactose, and this interaction is critical for exerting full insecticidal action against mosquito target cell lines

    Crystal structure and biophysical analysis of furfural detoxifying aldehyde reductase from clostridium beijerinkii

    Get PDF
    Many aldehydes such as furfural are present in high quantities in lignocellulose lysates and are fermentation inhibitors that make biofuel production from this abundant carbon source extremely challenging. Cbei_3974 has recently been identified as an aldo-keto reductase responsible for partial furfural resistance in Clostridium beijerinkii. Rational engineering of this enzyme could enhance the furfural tolerance of this organism thereby improving biofuel yields. We report an extensive characterization of Cbei_3974 and a single crystal X-ray structure of Cbei_3974 in complex with NADPH at a resolution of 1.75 Ã…. Docking studies identified residues involved in substrate binding and an activity screen revealed the substrate tolerance of the enzyme. Hydride transfer, which is partially rate limiting under physiological conditions, occurs from the pro-R hydrogen of NADPH. Enzyme isotope labeling revealed a temperature-independent enzyme isotope effect of unity, indicating that the enzyme does not use dynamic coupling for catalysis and suggests that the active site of the enzyme is optimally configured for catalysis with the substrate tested

    Broad sialic acid usage amongst species D human adenovirus

    Get PDF
    Human adenoviruses (HAdV) are widespread pathogens causing usually mild infections. The Species D (HAdV-D) cause gastrointestinal tract infections and epidemic keratoconjunctivitis (EKC). Despite being significant pathogens, knowledge around HAdV-D mechanism of cell infection is lacking. Sialic acid (SA) usage has been proposed as a cell infection mechanism for EKC causing HAdV-D. Here we highlight an important role for SA engagement by many HAdV-D. We provide apo state crystal structures of 7 previously undetermined HAdV-D fiber-knob proteins, and structures of HAdV-D25, D29, D30 and D53 fiber-knob proteins in complex with SA. Biologically, we demonstrate that removal of cell surface SA reduced infectivity of HAdV-C5 vectors pseudotyped with HAdV-D fiber-knob proteins, whilst engagement of the classical HAdV receptor CAR was variable. Our data indicates variable usage of SA and CAR across HAdV-D. Better defining these interactions will enable improved development of antivirals and engineering of the viruses into refined therapeutic vectors

    The crystal sructure of Bacillus cereus HblL1

    Get PDF
    The Hbl toxin is a three-component haemolytic complex produced by Bacillus cereus sensu lato strains and implicated as a cause of diarrhoea in B. cereus food poisoning. While the structure of the HblB component of this toxin is known, the structures of the other components are unresolved. Here, we describe the expression of the recombinant HblL1 component and the elucidation of its structure to 1.36 Ã…. Like HblB, it is a member of the alpha-helical pore-forming toxin family. In comparison to other members of this group, it has an extended hydrophobic beta tongue region that may be involved in pore formation. Molecular docking was used to predict possible interactions between HblL1 and HblB, and suggests a head to tail dimer might form, burying the HblL1 beta tongue region
    • …
    corecore