1,134 research outputs found
Fandom
This entry presents an overview of the development and current state of fan studies, exploring the “reverse image” of media effects. The field of fan studies offers the ultimate rebuttal of the traditional media effects-model, by stressing the independence, agency and power of media consumers vis-à-vis media producers.
After providing a short historiography of the discipline, this entry dives deeper into three themes that have been central to discussions within fan studies since its early beginnings: fan fiction, fan communities, and places of fandom
Levels of naturally produced methoxylated MeO-PBDEs and their biomagnification in harbour seals and harbour porpoises from the North Sea
Mapping individual electromagnetic field components inside a photonic crystal
We present a method to map the absolute electromagnetic field strength inside
photonic crystals. We apply the method to map the electric field component Ez
of a two-dimensional photonic crystal slab at microwave frequencies. The slab
is placed between two mirrors to select Bloch standing waves and a
subwavelength spherical scatterer is scanned inside the resulting resonator.
The resonant Bloch frequencies shift depending on the electric field at the
position of the scatterer. To map the electric field component Ez we measure
the frequency shift in the reflection and transmission spectrum of the slab
versus the scatterer position. Very good agreement is found between
measurements and calculations without any adjustable parameters.Comment: 12 pages, 7 figure
Occurrence and profiles of PCBs and PBDEs in harbour seals and harbour porpoises from the southern North Sea
Harbour porpoises (Phocoena phocoen) and harbour seals (Phoca vitulina), two representative top coastal pollution. Concentrations of sum PCBs were 1-2 orders of magnitude higher than concentrations of sum PBDEs (with median values of 23.1 μg.g- lw (lipid weight) and 12.4 μ.g-1 lw for sum PCBs and 0.33 μ.g- lw and 0.76 μ.g-1 lw for sum PBDEs in harbour seals and harbour porpoises respectively) and were highly dependent of age group and gender. For both species, the highest PCB concentrations were observed in adult males as the result of accumulation for years and years, while the highest PBDE concentrations were measured in juveniles probably due to better developed metabolic capacities for these congeners with age in adults. Results for PCBs were higher than observations in harbour seals and porpoises from other areas, while results for PBDEs were comparable indicating that the North Sea is a highly contaminated area. Relative PCB and PBDE profiles were constructed to compare metabolic capacities between harbour seals and porpoises. A higher contribution of lower chlorinated and nonpersistent congeners, such as CB 52, CB 95, CB 101, CB 118 and CB 149 indicated that harbour porpoises are unable to metabolize these compounds. Similar to PCBs, higher contributions of other PBDEs than BDE 47 were observed in harbour porpoises, suggesting that this species has difficulties to metabolize these congeners. In contrast, harbour seals showed a higher ability to metabolize PCBs and PBDEs
Free expansion of lowest Landau level states of trapped atoms: a wavefunction microscope
We show that for any lowest-Landau-level state of a trapped, rotating,
interacting Bose gas, the particle distribution in coordinate space in a free
expansion (time of flight) experiment is related to that in the trap at the
time it is turned off by a simple rescaling and rotation. When the
lowest-Landau-level approximation is valid, interactions can be neglected
during the expansion, even when they play an essential role in the ground state
when the trap is present. The correlations in the density in a single snapshot
can be used to obtain information about the fluid, such as whether a transition
to a quantum Hall state has occurred.Comment: 5 pages, no figures. v2: discussion of neglect of interactions during
expansion improved, refs adde
Optical evidence of surface state suppression in Bi based topological insulators
A key challenge in condensed matter research is the optimization of
topological insulator (TI) compounds for the study and future application of
their unique surface states. Truly insulating bulk states would allow the
exploitation of predicted surface state properties, such as protection from
backscattering, dissipationless spin-polarized currents, and the emergence of
novel particles. Towards this end, major progress was recently made with the
introduction of highly resistive BiTeSe, in which surface state
conductance and quantum oscillations are observed at low temperatures.
Nevertheless, an unresolved and pivotal question remains: while room
temperature ARPES studies reveal clear evidence of TI surface states, their
observation in transport experiments is limited to low temperatures. A better
understanding of this surface state suppression at elevated temperatures is of
fundamental interest, and crucial for pushing the boundary of device
applications towards room-temperature operation. In this work, we
simultaneously measure TI bulk and surface states via temperature dependent
optical spectroscopy, in conjunction with transport and ARPES measurements. We
find evidence of coherent surface state transport at low temperatures, and
propose that phonon mediated coupling between bulk and surface states
suppresses surface conductance as temperature rises.Comment: 13 pages, 10 figure
Chiral tunneling in single and bilayer graphene
We review chiral (Klein) tunneling in single-layer and bilayer graphene and
present its semiclassical theory, including the Berry phase and the Maslov
index. Peculiarities of the chiral tunneling are naturally explained in terms
of classical phase space. In a one-dimensional geometry we reduced the original
Dirac equation, describing the dynamics of charge carriers in the single layer
graphene, to an effective Schr\"odinger equation with a complex potential. This
allowed us to study tunneling in details and obtain analytic formulas. Our
predictions are compared with numerical results. We have also demonstrated
that, for the case of asymmetric n-p-n junction in single layer graphene, there
is total transmission for normal incidence only, side resonances are
suppressed.Comment: submitted to Proceedings of Nobel Symposium on graphene, May 201
Design issues for improved environmental performance of dye-sensitized and organic nanoparticulate solar cells
- …
