4,569 research outputs found

    Probing the helium-graphite interaction

    Get PDF
    Two separate lines of investigation have recently converged to produce a highly detailed picture of the behavior of helium atoms physisorbed on graphite basal plane surfaces. Atomic beam scattering experiments on single crystals have yielded accurate values for the binding energies of several· states for both (^4)He and (^3)He, as well as matrix elements of the largest Fourier component of the periodic part of the interaction potential. From these data, a complete three-dimensional description of the potential has been constructed, and the energy band structure of a helium atom moving in this potential calculated. At the same time, accurate thermodynamic measurements were made on submonolayer helium films adsorbed on Grafoil. The binding energy and low-coverage specific heat deduced from these measurements are in excellent agreement with those calculated from the band structures

    Casimir Energies and Pressures for δ\delta-function Potentials

    Full text link
    The Casimir energies and pressures for a massless scalar field associated with δ\delta-function potentials in 1+1 and 3+1 dimensions are calculated. For parallel plane surfaces, the results are finite, coincide with the pressures associated with Dirichlet planes in the limit of strong coupling, and for weak coupling do not possess a power-series expansion in 1+1 dimension. The relation between Casimir energies and Casimir pressures is clarified,and the former are shown to involve surface terms. The Casimir energy for a δ\delta-function spherical shell in 3+1 dimensions has an expression that reduces to the familiar result for a Dirichlet shell in the strong-coupling limit. However, the Casimir energy for finite coupling possesses a logarithmic divergence first appearing in third order in the weak-coupling expansion, which seems unremovable. The corresponding energies and pressures for a derivative of a δ\delta-function potential for the same spherical geometry generalizes the TM contributions of electrodynamics. Cancellation of divergences can occur between the TE (δ\delta-function) and TM (derivative of δ\delta-function) Casimir energies. These results clarify recent discussions in the literature.Comment: 16 pages, 1 eps figure, uses REVTeX

    Casimir energy, dispersion, and the Lifshitz formula

    Full text link
    Despite suggestions to the contrary, we show in this paper that the usual dispersive form of the electromagnetic energy must be used to derive the Lifshitz force between parallel dielectric media. This conclusion follows from the general form of the quantum vacuum energy, which is the basis of the multiple-scattering formalism. As an illustration, we explicitly derive the Lifshitz formula for the interaction between parallel dielectric semispaces, including dispersion, starting from the expression for the total energy of the system. The issues of constancy of the energy between parallel plates and of the observability of electrostrictive forces are briefly addressed.Comment: 11 pages, no figure

    Remark on the perturbative component of inclusive τ\tau-decay

    Full text link
    In the context of the inclusive τ\tau-decay, we analyze various forms of perturbative expansions which have appeared as modifications of the original perturbative series. We argue that analytic perturbation theory, which combines renormalization-group invariance and Q2Q^2-analyticity, has significant merits favoring its use to describe the perturbative component of τ\tau-decay.Comment: 5 pages, ReVTEX, 2 eps figures. Revised paper includes clarifying remarks and corrected references. To be published in Phys. Rev.

    Redefining critical autism studies: A more inclusive interpretation

    Get PDF
    This article explores the definition of Critical Autism Studies and its inclusion in autistic scholarship. There has been critique of recent non-autistic literature for lacking autistic authorship, leading to doubts about its epistemological integrity due to misrepresentations of autistic culture and the neurodiversity movement. This article utilises the work of Arnold, Milton and O’Dell et al. to introduce an emancipatory definition to ensure the discipline is autistic led. In the process, we discuss the nature of autism studies and what constitutes critical literature. We propose Waltz’s interpretation of Critical Autism Studies as a working definition

    Casimir effect for curved geometries: PFA validity limits

    Full text link
    We compute Casimir interaction energies for the sphere-plate and cylinder-plate configuration induced by scalar-field fluctuations with Dirichlet boundary conditions. Based on a high-precision calculation using worldline numerics, we quantitatively determine the validity bounds of the proximity force approximation (PFA) on which the comparison between all corresponding experiments and theory are based. We observe the quantitative failure of the PFA on the 1% level for a curvature parameter a/R > 0.00755. Even qualitatively, the PFA fails to predict reliably the correct sign of genuine Casimir curvature effects. We conclude that data analysis of future experiments aiming at a precision of 0.1% must no longer be based on the PFA.Comment: 4 pages, 4 figure

    Mode-by-mode summation for the zero point electromagnetic energy of an infinite cylinder

    Full text link
    Using the mode-by-mode summation technique the zero point energy of the electromagnetic field is calculated for the boundary conditions given on the surface of an infinite solid cylinder. It is assumed that the dielectric and magnetic characteristics of the material which makes up the cylinder (ϵ1,μ1)(\epsilon_1, \mu_1) and of that which makes up the surroundings (ϵ2,μ2)(\epsilon_2, \mu_2) obey the relation ϵ1μ1=ϵ2μ2\epsilon_1\mu_1= \epsilon_2\mu_2. With this assumption all the divergences cancel. The divergences are regulated by making use of zeta function techniques. Numerical calculations are carried out for a dilute dielectric cylinder and for a perfectly conducting cylindrical shell. The Casimir energy in the first case vanishes, and in the second is in complete agreement with that obtained by DeRaad and Milton who employed a Green's function technique with an ultraviolet regulator.Comment: REVTeX, 16 pages, no figures and tables; transcription error in previous version corrected, giving a zero Casimir energy for a tenuous cylinde

    Attractive Casimir effect in an infrared modified gluon bag model

    Full text link
    In this work, we are motivated by previous attempts to derive the vacuum contribution to the bag energy in terms of familiar Casimir energy calculations for spherical geometries. A simple infrared modified model is introduced which allows studying the effects of the analytic structure as well as the geometry in a clear manner. In this context, we show that if a class of infrared vanishing effective gluon propagators is considered, then the renormalized vacuum energy for a spherical bag is attractive, as required by the bag model to adjust hadron spectroscopy.Comment: 7 pages. 1 figure. Accepted for publication in Physical Review D. Revised version with improved analysis and presentation, references adde

    The Adler Function for Light Quarks in Analytic Perturbation Theory

    Full text link
    The method of analytic perturbation theory, which avoids the problem of ghost-pole type singularities and gives a self-consistent description of both spacelike and timelike regions, is applied to describe the "light" Adler function corresponding to the non-strange vector channel of the inclusive decay of the τ\tau lepton. The role of threshold effects is investigated. The behavior of the quark-antiquark system near threshold is described by using a new relativistic resummation factor. It is shown that the method proposed leads to good agreement with the ``experimental'' Adler function down to the lowest energy scale.Comment: 13 pages, one ps figure, REVTe

    Realizability of metamaterials with prescribed electric permittivity and magnetic permeability tensors

    Full text link
    We show that any pair of real symmetric tensors \BGve and \BGm can be realized as the effective electric permittivity and effective magnetic permeability of a metamaterial at a given fixed frequency. The construction starts with two extremely low loss metamaterials, with arbitrarily small microstructure, whose existence is ensured by the work of Bouchitt{\'e} and Bourel and Bouchitt\'e and Schweizer, one having at the given frequency a permittivity tensor with exactly one negative eigenvalue, and a positive permeability tensor, and the other having a positive permittivity tensor, and a permeability tensor having exactly one negative eigenvalue. To achieve the desired effective properties these materials are laminated together in a hierarchical multiple rank laminate structure, with widely separated length scales, and varying directions of lamination, but with the largest length scale still much shorter than the wavelengths and attenuation lengths in the macroscopic effective medium.Comment: 12 pages, no figure
    corecore