19 research outputs found

    Listeria monocytogenes in Milk Products

    Get PDF
    peer-reviewedMilk and milk products are frequently identified as vectors for transmission of Listeria monocytogenes. Milk can be contaminated at farm level either by indirect external contamination from the farm environment or less frequently by direct contamination of the milk from infection in the animal. Pasteurisation of milk will kill L. monocytogenes, but post-pasteurisation contamination, consumption of unpasteurised milk and manufacture of unpasteurised milk products can lead to milk being the cause of outbreaks of listeriosis. Therefore, there is a concern that L. monocytogenes in milk could lead to a public health risk. To protect against this risk, there is a need for awareness surrounding the issues, hygienic practices to reduce the risk and adequate sampling and analysis to verify that the risk is controlled. This review will highlight the issues surrounding L. monocytogenes in milk and milk products, including possible control measures. It will therefore create awareness about L. monocytogenes, contributing to protection of public health

    Remote Sensing of Human–Environment Interactions in Global Change Research: A Review of Advances, Challenges and Future Directions

    No full text
    The role of remote sensing and human–environment interactions (HEI) research in social and environmental decision-making has steadily increased along with numerous technological and methodological advances in the global environmental change field. Given the growing inter- and trans-disciplinary nature of studies focused on understanding the human dimensions of global change (HDGC), the need for a synchronization of agendas is evident. We conduct a bibliometric assessment and review of the last two decades of peer-reviewed literature to ascertain what the trends and current directions of integrating remote sensing into HEI research have been and discuss emerging themes, challenges, and opportunities. Despite advances in applying remote sensing to understanding ever more complex HEI fields such as land use/land cover change and landscape degradation, agricultural dynamics, urban geography and ecology, natural hazards, water resources, epidemiology, or paleo HEIs, challenges remain in acquiring and leveraging accurately georeferenced social data and establishing transferable protocols for data integration. However, recent advances in micro-satellite, unmanned aerial systems (UASs), and sensor technology are opening new avenues of integration of remotely sensed data into HEI research at scales relevant for decision-making purposes that simultaneously catalyze developments in HDGC research. Emerging or underutilized methodologies and technologies such as thermal sensing, digital soil mapping, citizen science, UASs, cloud computing, mobile mapping, or the use of “humans as sensors” will continue to enhance the relevance of HEI research in achieving sustainable development goals and driving the science of HDGC further

    Thermal Imaging of Beach-Nesting Bird Habitat with Unmanned Aerial Vehicles: Considerations for Reducing Disturbance and Enhanced Image Accuracy

    No full text
    Knowledge of temperature variation within and across beach-nesting bird habitat, and how such variation may affect the nesting success and survival of these species, is currently lacking. This type of data is furthermore needed to refine predictions of population changes due to climate change, identify important breeding habitat, and guide habitat restoration efforts. Thermal imagery collected with unmanned aerial vehicles (UAVs) provides a potential approach to fill current knowledge gaps and accomplish these goals. Our research outlines a novel methodology for collecting and implementing active thermal ground control points (GCPs) and assess the accuracy of the resulting imagery using an off-the-shelf commercial fixed-wing UAV that allows for the reconstruction of thermal landscapes at high spatial, temporal, and radiometric resolutions. Additionally, we observed and documented the behavioral responses of beach-nesting birds to UAV flights and modifications made to flight plans or the physical appearance of the UAV to minimize disturbance. We found strong evidence that flying on cloudless days and using sky-blue camouflage greatly reduced disturbance to nesting birds. The incorporation of the novel active thermal GCPs into the processing workflow increased image spatial accuracy an average of 12 m horizontally (mean root mean square error of checkpoints in imagery with and without GCPs was 0.59 m and 23.75 m, respectively). The final thermal indices generated had a ground sampling distance of 25.10 cm and a thermal accuracy of less than 1 °C. This practical approach to collecting highly accurate thermal data for beach-nesting bird habitat while avoiding disturbance is a crucial step towards the continued monitoring and modeling of beach-nesting birds and their habitat
    corecore