200 research outputs found

    Atomic level micromagnetic model of recording media switching at elevated temperatures

    Full text link
    An atomic level micromagnetic model of granular recording media is developed and applied to examine external field-induced grain switching at elevated temperatures which captures non-uniform reversal modes. The results are compared with traditional methods which employ the Landau-Lifshitz-Gilbert equations based on uniformly magnetized grains with assigned intrinsic temperature profiles for M(T)M(T) and K(T)K(T). Using nominal parameters corresponding to high-anisotropy FePt-type media envisioned for Energy Assisted Magnetic Recording, our results demonstrate that atomic-level reversal slightly reduces the field required to switch grains at elevated temperatures, but results in larger fluctuations, when compared to a uniformly magnetized grain model.Comment: 4 pages, 5 figure

    A test and measurement technique for determining possible lightning-induced voltages in aircraft electrical circuits

    Get PDF
    Transient analyzer consists of four 0.5 microfarads capacitors chargeable by self-contained solid state 50 KV dc power supply operating from standard 110 Vac line voltage. Unit can circulate unidirectional current impulses of up to 500 amperes through aircraft at waveshapes similar to those of natural lightning strokes

    Preliminary tests of vulnerability of typical aircraft electronics to lightning-induced voltages

    Get PDF
    Tests made on two pieces of typical aircraft electronics equipment to ascertain their vulnerability to simulated lightning-induced transient voltages representative of those which might occur in flight when the aircraft is struck by lightning were conducted. The test results demonstrated that such equipment can be interfered with or damaged by transient voltages as low as 21 volts peak. Greater voltages can cause failure of semiconductor components within the equipment. The results emphasize a need for establishment of coordinated system susceptibility and component vulnerability criteria to achieve lightning protection of aerospace electrical and electronic systems

    Magnetic Phase Diagram of the Ferromagnetically Stacked Triangular XY Antiferromagnet: A Finite-Size Scaling Study

    Full text link
    Histogram Monte-Carlo simulation results are presented for the magnetic-field -- temperature phase diagram of the XY model on a stacked triangular lattice with antiferromagnetic intraplane and ferromagnetic interplane interactions. Finite-size scaling results at the various transition boundaries are consistent with expectations based on symmetry arguments. Although a molecular-field treatment of the Hamiltonian fails to reproduce the correct structure for the phase diagram, it is demonstrated that a phenomenological Landau-type free-energy model contains all the esstential features. These results serve to complement and extend our earlier work [Phys. Rev. B {\bf 48}, 3840 (1993)].Comment: 5 pages (RevTex 3.0), 6 figures available upon request, CRPS 93-

    A model of magnetic order in hexagonal HoMnO3

    Full text link
    Symmetry arguments are used to develop a spin Hamiltonian for the description of the complex magnetic ordering in HoMnO3_3. Using a novel application of the Landau Lifshitz Gilbert dynamic torque equations to this model of the frustrated Mn ions on an ABAB stacked triangular antiferromagnetic, it is shown that the four principal spin configurations observed in this compound are stabilized. Ho-Mn coupling is found to be a consequence of an unusual trigonal anisotropy term which is responsible for simultaneous Mn spin reorientation and onset of Ho magnetic order. Based on these microscopic considerations, a mean-field Landau-type free energy is derived which reproduces the succession of observed temperature driven magnetic phase transitions at zero field, including re-entrant behavior. In addition, our analysis suggests that the basal-plane magnetic order should be slightly incommensurate with the lattice.Comment: 9 pages, 3 figure

    Nonlocal Landau theory of the magnetic phase diagram of highly frustrated magnetoelectric CuFeO2_2

    Full text link
    A nonlocal Landau-type free energy functional of the spin density is developed to model the large variety of magnetic states which occur in the magnetic field-temperature phase diagram of magnetoelectric CuFeO2_2. Competition among long-range quadratic exchange, biquadratic anti-symmetric exchange, and trigonal anisotropy terms, consistent with the high-temperature rhombohedral R3ˉ\bar{3}m crystal symmetry, are shown to all play important roles in stabilizing the unusual combination of commensurate and incommensurate spin structures in this highly frustrated triangular antiferromagnet. It is argued that strong magnetoelastic coupling is largely responsible for the nonlocal nature of the free energy. A key feature of the analysis is that an electric polarization is induced by a canting of the non-collinear incommensurate spin structure. Application of the model to ordered spin states in the triangular antiferromagnets MnBr2_2 and NaFeO2_2 is also discussed.Comment: 20 pages, 2 figure
    corecore