137 research outputs found

    Proof-of-concept study demonstrating the pathogenicity of affinity-purified IgG antibodies directed to domain I of β2-glycoprotein I in a mouse model of anti-phospholipid antibody-induced thrombosis.

    Get PDF
    IgG aPL against domain I of β2-glycoprotein I (β2GPI) [anti-DI (aDI)] is associated with the pathogenesis of APS, an autoimmune disease defined by thrombosis and pregnancy morbidity. To date, however, no study has demonstrated direct pathogenicity of IgG aDI in vivo. In this proof-of-concept study, we designed a novel system to affinity purify polyclonal aDI aPL in order to assess its prothrombotic ability in a well-characterized mouse microcirculation model for APS

    Characterisation and internalisation of recombinant humanised HMFG-1 antibodies against MUC1

    Get PDF
    The humanised HMFG-1 immunoglobulin has been extensively developed as a clinical immunotherapeutic agent for MUC1 expressing tumours. We have constructed a single-chain Fv (scFv) and Fab fragment from this antibody and shown that both these species retain their specificity for MUC1. The scFv was less stable and less soluble than the Fab. Detailed analyses of the binding kinetics of the whole IgG and Fab fragment show that the affinity for MUC1 synthetic peptides is low (approximately 100 n for the IgG and 10 μ for the Fab), with particularly low but similar dissociation rate constants (0.031–0.095 s−1). Binding to native antigen on the cell surface is over two orders of magnitude better. Confocal immunofluorescence microscopy shows that both the IgG and Fab are internalised rapidly (the IgG is internalised within 15 min) and colocalise to early endosomes. This work provides an appreciation of the binding, internalising and trafficking kinetics, important for the development of future therapeutics based on this antibody

    Pancreatic enzyme replacement therapy in patients with pancreatic cancer: A national prospective study

    Get PDF
    Objective: UK national guidelines recommend pancreatic enzyme replacement therapy (PERT) in pancreatic cancer. Over 80% of pancreatic cancers are unresectable and managed in non-surgical units. The aim was to assess variation in PERT prescribing, determine factors associated with its use and identify potential actions to improve prescription rates. Design: RICOCHET was a national prospective audit of malignant pancreatic, peri-ampullary lesions or malignant biliary obstruction between April and August 2018. This analysis focuses on pancreatic cancer patients and is reported to STROBE guidelines. Multivariable regression analysis was undertaken to assess factors associated with PERT prescribing. Results: Rates of PERT prescribing varied among the 1350 patients included. 74.4% of patients with potentially resectable disease were prescribed PERT compared to 45.3% with unresectable disease. PERT prescription varied across surgical hospitals but high prescribing rates did not disseminate out to the respective referring network. PERT prescription appeared to be related to the treatment aim for the patient and the amount of clinician contact a patient has. PERT prescription in potentially resectable patients was positively associated with dietitian referral (p = 0.001) and management at hepaticopancreaticobiliary (p = 0.049) or pancreatic unit (p = 0.009). Prescription in unresectable patients also had a negative association with Charlson comorbidity score 5–7 (p = 0.045) or >7 (p = 0.010) and a positive association with clinical nurse specialist review (p = 0.028). Conclusion: Despite national guidance, wide variation and under-treatment with PERT exists. Given that most patients with pancreatic cancer have unresectable disease and are treated in non-surgical hospitals, where prescribing is lowest, strategies to disseminate best practice and overcome barriers to prescribing are urgently required

    Magnetic effects on microstructure and solute plume dynamics of directionally solidifying Ga-In alloy

    Get PDF
    The effects of applying a 0.2-T transverse magnetic field on a solidifying Ga-25 wt%In alloy have been investigated through a joint experimental and numerical study. The magnetic field introduced significant changes to both the microstructure and the dynamics of escaping high-concentration Ga plumes. Plume migration across the interface was quantified and correlated to simulations to demonstrate that thermoelectric magnetohydrodynamics (TEMHD) is the underlying mechanism. TEMHD introduced macrosegregation within the dendritic structure, leading to the formation of a stable “chimney” channel by increasing the solutal buoyancy in the flow direction. The resulting pressure difference across the solidification front introduced a secondary hydrodynamic phenomenon that subsequently caused solute plume migration

    Rise and Fall of an Anti-MUC1 Specific Antibody

    Get PDF
    So far, human antibodies with good affinity and specificity for MUC1, a transmembrane protein overexpressed on breast cancers and ovarian carcinomas, and thus a promising target for therapy, were very difficult to generate.A human scFv antibody was isolated from an immune library derived from breast cancer patients immunised with MUC1. The anti-MUC1 scFv reacted with tumour cells in more than 80% of 228 tissue sections of mamma carcinoma samples, while showing very low reactivity with a large panel of non-tumour tissues. By mutagenesis and phage display, affinity of scFvs was increased up to 500fold to 5,7×10(-10) M. Half-life in serum was improved from below 1 day to more than 4 weeks and was correlated with the dimerisation tendency of the individual scFvs. The scFv bound to T47D and MCF-7 mammalian cancer cell lines were recloned into the scFv-Fc and IgG format resulting in decrease of affinity of one binder. The IgG variants with the highest affinity were tested in mouse xenograft models using MCF-7 and OVCAR tumour cells. However, the experiments showed no significant decrease in tumour growth or increase in the survival rates. To study the reasons for the failure of the xenograft experiments, ADCC was analysed in vitro using MCF-7 and OVCAR3 target cells, revealing a low ADCC, possibly due to internalisation, as detected for MCF-7 cells.Antibody phage display starting with immune libraries and followed by affinity maturation is a powerful strategy to generate high affinity human antibodies to difficult targets, in this case shown by the creation of a highly specific antibody with subnanomolar affinity to a very small epitope consisting of four amino acids. Despite these "best in class" binding parameters, the therapeutic success of this antibody was prevented by the target biology

    Basic science232. Certolizumab pegol prevents pro-inflammatory alterations in endothelial cell function

    Get PDF
    Background: Cardiovascular disease is a major comorbidity of rheumatoid arthritis (RA) and a leading cause of death. Chronic systemic inflammation involving tumour necrosis factor alpha (TNF) could contribute to endothelial activation and atherogenesis. A number of anti-TNF therapies are in current use for the treatment of RA, including certolizumab pegol (CZP), (Cimzia ®; UCB, Belgium). Anti-TNF therapy has been associated with reduced clinical cardiovascular disease risk and ameliorated vascular function in RA patients. However, the specific effects of TNF inhibitors on endothelial cell function are largely unknown. Our aim was to investigate the mechanisms underpinning CZP effects on TNF-activated human endothelial cells. Methods: Human aortic endothelial cells (HAoECs) were cultured in vitro and exposed to a) TNF alone, b) TNF plus CZP, or c) neither agent. Microarray analysis was used to examine the transcriptional profile of cells treated for 6 hrs and quantitative polymerase chain reaction (qPCR) analysed gene expression at 1, 3, 6 and 24 hrs. NF-κB localization and IκB degradation were investigated using immunocytochemistry, high content analysis and western blotting. Flow cytometry was conducted to detect microparticle release from HAoECs. Results: Transcriptional profiling revealed that while TNF alone had strong effects on endothelial gene expression, TNF and CZP in combination produced a global gene expression pattern similar to untreated control. The two most highly up-regulated genes in response to TNF treatment were adhesion molecules E-selectin and VCAM-1 (q 0.2 compared to control; p > 0.05 compared to TNF alone). The NF-κB pathway was confirmed as a downstream target of TNF-induced HAoEC activation, via nuclear translocation of NF-κB and degradation of IκB, effects which were abolished by treatment with CZP. In addition, flow cytometry detected an increased production of endothelial microparticles in TNF-activated HAoECs, which was prevented by treatment with CZP. Conclusions: We have found at a cellular level that a clinically available TNF inhibitor, CZP reduces the expression of adhesion molecule expression, and prevents TNF-induced activation of the NF-κB pathway. Furthermore, CZP prevents the production of microparticles by activated endothelial cells. This could be central to the prevention of inflammatory environments underlying these conditions and measurement of microparticles has potential as a novel prognostic marker for future cardiovascular events in this patient group. Disclosure statement: Y.A. received a research grant from UCB. I.B. received a research grant from UCB. S.H. received a research grant from UCB. All other authors have declared no conflicts of interes

    Oral abstracts 3: RA Treatment and outcomesO13. Validation of jadas in all subtypes of juvenile idiopathic arthritis in a clinical setting

    Get PDF
    Background: Juvenile Arthritis Disease Activity Score (JADAS) is a 4 variable composite disease activity (DA) score for JIA (including active 10, 27 or 71 joint count (AJC), physician global (PGA), parent/child global (PGE) and ESR). The validity of JADAS for all ILAR subtypes in the routine clinical setting is unknown. We investigated the construct validity of JADAS in the clinical setting in all subtypes of JIA through application to a prospective inception cohort of UK children presenting with new onset inflammatory arthritis. Methods: JADAS 10, 27 and 71 were determined for all children in the Childhood Arthritis Prospective Study (CAPS) with complete data available at baseline. Correlation of JADAS 10, 27 and 71 with single DA markers was determined for all subtypes. All correlations were calculated using Spearman's rank statistic. Results: 262/1238 visits had sufficient data for calculation of JADAS (1028 (83%) AJC, 744 (60%) PGA, 843 (68%) PGE and 459 (37%) ESR). Median age at disease onset was 6.0 years (IQR 2.6-10.4) and 64% were female. Correlation between JADAS 10, 27 and 71 approached 1 for all subtypes. Median JADAS 71 was 5.3 (IQR 2.2-10.1) with a significant difference between median JADAS scores between subtypes (p < 0.01). Correlation of JADAS 71 with each single marker of DA was moderate to high in the total cohort (see Table 1). Overall, correlation with AJC, PGA and PGE was moderate to high and correlation with ESR, limited JC, parental pain and CHAQ was low to moderate in the individual subtypes. Correlation coefficients in the extended oligoarticular, rheumatoid factor negative and enthesitis related subtypes were interpreted with caution in view of low numbers. Conclusions: This study adds to the body of evidence supporting the construct validity of JADAS. JADAS correlates with other measures of DA in all ILAR subtypes in the routine clinical setting. Given the high frequency of missing ESR data, it would be useful to assess the validity of JADAS without inclusion of the ESR. Disclosure statement: All authors have declared no conflicts of interest. Table 1Spearman's correlation between JADAS 71 and single markers DA by ILAR subtype ILAR Subtype Systemic onset JIA Persistent oligo JIA Extended oligo JIA Rheumatoid factor neg JIA Rheumatoid factor pos JIA Enthesitis related JIA Psoriatic JIA Undifferentiated JIA Unknown subtype Total cohort Number of children 23 111 12 57 7 9 19 7 17 262 AJC 0.54 0.67 0.53 0.75 0.53 0.34 0.59 0.81 0.37 0.59 PGA 0.63 0.69 0.25 0.73 0.14 0.05 0.50 0.83 0.56 0.64 PGE 0.51 0.68 0.83 0.61 0.41 0.69 0.71 0.9 0.48 0.61 ESR 0.28 0.31 0.35 0.4 0.6 0.85 0.43 0.7 0.5 0.53 Limited 71 JC 0.29 0.51 0.23 0.37 0.14 -0.12 0.4 0.81 0.45 0.41 Parental pain 0.23 0.62 0.03 0.57 0.41 0.69 0.7 0.79 0.42 0.53 Childhood health assessment questionnaire 0.25 0.57 -0.07 0.36 -0.47 0.84 0.37 0.8 0.66 0.4

    A parallel cellular automata Lattice Boltzmann Method for convection-driven solidification

    Get PDF
    This article presents a novel coupling of numerical techniques that enable three-dimensional convection-driven microstructure simulations to be con- ducted on practical time scales appropriate for small-size components or experiments. On the microstructure side, the cellular automata method is efficient for relatively large-scale simulations, while the lattice Boltzmann method provides one of the fastest transient computational fluid dynamics solvers. Both of these methods have been parallelized and coupled in a single code, allowing resolution of large-scale convection-driven solidification problems. The numerical model is validated against benchmark cases, extended to capture solute plumes in directional solidification and finally used to model alloy solidification of an entire differentially heated cavity capturing both microstructural and meso-/macroscale phenomena
    corecore