53 research outputs found

    Dynamical Realization of Macroscopic Superposition States of Cold Bosons in a Tilted Double Well

    Full text link
    We present exact expressions for the quantum sloshing of Bose-Einstein condensates in a tilted two-well potential. Tunneling is suppressed by a small potential difference between wells, or tilt. However, tunneling resonances occur for critical values of the tilt when the barrier is high. At resonance, tunneling times on the order of 10-100 ms are possible. Furthermore, such tilted resonances lead to a dynamical scheme for creating few-body NOON-like macroscopic superposition states which are protected by the many body wavefunction against potential fluctuations.Comment: 6 pages, 5 figures, final version, only minor changes from previous arXiv versio

    Collective Excitations of Bose-Einstein Condensates in a Double-Well Potential

    Full text link
    We investigate collective excitations of Bose-Einstein condensates at absolute zero in a double-well trap. We solve the Bogoliubov equations with a double-well trap, and show that the crossover from the dipole mode to the Josephson plasma mode occurs in the lowest energy excitation. It is found that the anomalous tunneling property of low energy excitations is crucial to the crossover.Comment: 14 pages, 6 figure

    Generation and propagation of entanglement in driven coupled-qubit systems

    Full text link
    In a bipartite system subject to decoherence from two separate reservoirs, the entanglement is typically destroyed faster than for single reservoirs. Surprisingly however, the existence of separate reservoirs can also have a beneficial entangling effect: if the qubits are coupled and driven externally by a classical field, the system ends up in a stationary state characterized by a finite degree of entanglement. This phenomenon occurs only in a certain region of the parameter space and the structure of the stationary state has a universal form which does not depend on the initial state or on the specific physical realization of the qubits. We show that the entanglement thus generated can be propagated within a quantum network using simple local unitary operations. We suggest the use of such systems as "batteries of entanglement" in quantum circuits.Comment: 14 pages, 7 figure

    A tutorial on optimal control and reinforcement learning methods for quantum technologies

    Get PDF
    Quantum Optimal Control is an established field of research which is necessary for the development of Quantum Technologies. In recent years, Machine Learning techniques have been proved useful to tackle a variety of quantum problems. In particular, Reinforcement Learning has been employed to address typical problems of control of quantum systems. In this tutorial we introduce the methods of Quantum Optimal Control and Reinforcement Learning by applying them to the problem of three-level population transfer. The jupyter notebooks to reproduce some of our results are open-sourced and available on github1

    Spin-polarized neutron reflectivity: A probe of vortices in thin-film superconductors

    Get PDF
    URL:http://link.aps.org/doi/10.1103/PhysRevB.59.14692 DOI:10.1103/PhysRevB.59.14692It is demonstrated that the specular reflectivity of spin-polarized neutrons can be used to study vortices in a thin-film superconductor. Experiments were performed on a 6000 Å thick c-axis film of YBa2Cu3O7-x with the magnetic field applied parallel to the surface. A magnetic hysteresis loop was observed for the spin-polarized reflection and, from these data, the average density of vortices was extracted. A model is presented which relates the specular reflectivity to the one-dimensional spatial distribution of vortices in the direction perpendicular to the surface. Unlike other techniques, neutron reflectivity observes vortices in a geometry where they are parallel to the interface.Support ~P.F.M., S.W.H.! from the Midwest Superconductivity Consortium ~MISCON! under the U.S. DOE Grant No. DE-FG02-90ER45427, the NSF DMR Grant No. 96-23827, and ~L.H.G., E.P.! from the NSF DMR Grant No. 94-21957, and ONR Grant No. N-00014-95-1-0831 is gratefully acknowledged. We thank E. Fullerton for useful discussions and D.H. Lowndes for help in understanding the surface roughness of oxide superconductors

    On Bures fidelity of displaced squeezed thermal states

    Get PDF
    Fidelity plays a key role in quantum information and communication theory. Fidelity can be interpreted as the probability that a decoded message possesses the same information content as the message prior to coding and transmission. In this paper, we give a formula of Bures fidelity for displaced squeezed thermal states directly by the displacement and squeezing parameters and birefly discuss how the results can apply to quantum information theory.Comment: 10 pages with RevTex require

    Bures distance between two displaced thermal states

    Full text link
    The Bures distance between two displaced thermal states and the corresponding geometric quantities (statistical metric, volume element, scalar curvature) are computed. Under nonunitary (dissipative) dynamics, the statistical distance shows the same general features previously reported in the literature by Braunstein and Milburn for two--state systems. The scalar curvature turns out to have new interesting properties when compared to the curvature associated with squeezed thermal states.Comment: 3 pages, RevTeX, no figure

    Persistent currents in a circular array of Bose-Einstein condensates

    Full text link
    A ring-shaped array of Bose-Einstein condensed atomic gases can display circular currents if the relative phase of neighboring condensates becomes locked to certain values. It is shown that, irrespective of the mechanism responsible for generating these states, only a restricted set of currents are stable, depending on the number of condensates, on the interaction and tunneling energies, and on the total number of particles. Different instabilities due to quasiparticle excitations are characterized and possible experimental setups for testing the stability prediction are also discussed.Comment: 7 pages, REVTex

    Cooper-pair coherence in a superfluid Fermi-gas of atoms

    Full text link
    We study the coherence properties of a trapped two-component gas of fermionic atoms below the BCS critical temperature. We propose an optical method to investigate the Cooper-pair coherence across different regions of the superfluid. Near-resonant laser light is used to induce transitions between the two coupled hyperfine states. The beam is split so that it probes two spatially separate regions of the gas. Absorption of the light in this interferometric scheme depends on the Cooper-pair coherence between the two regions.Comment: 10 pages, 5 figures. Submitted to J. Phys. B as a proceedings of the Salerno 2001 BEC worksho

    Atom Lasers, Coherent States, and Coherence:II. Maximally Robust Ensembles of Pure States

    Full text link
    As discussed in Wiseman and Vaccaro [quant-ph/9906125], the stationary state of an optical or atom laser far above threshold is a mixture of coherent field states with random phase, or, equivalently, a Poissonian mixture of number states. We are interested in which, if either, of these descriptions of ρss\rho_{ss}, is more natural. In the preceding paper we concentrated upon whether descriptions such as these are physically realizable (PR). In this paper we investigate another relevant aspect of these ensembles, their robustness. A robust ensemble is one for which the pure states that comprise it survive relatively unchanged for a long time under the system evolution. We determine numerically the most robust ensembles as a function of the parameters in the laser model: the self-energy χ\chi of the bosons in the laser mode, and the excess phase noise ν\nu. We find that these most robust ensembles are PR ensembles, or similar to PR ensembles, for all values of these parameters. In the ideal laser limit (ν=χ=0\nu=\chi=0), the most robust states are coherent states. As the phase noise ν\nu or phase dispersion χ\chi is increased, the most robust states become increasingly amplitude-squeezed. We find scaling laws for these states. As the phase diffusion or dispersion becomes so large that the laser output is no longer quantum coherent, the most robust states become so squeezed that they cease to have a well-defined coherent amplitude. That is, the quantum coherence of the laser output is manifest in the most robust PR states having a well-defined coherent amplitude. This lends support to the idea that robust PR ensembles are the most natural description of the state of the laser mode. It also has interesting implications for atom lasers in particular, for which phase dispersion due to self-interactions is expected to be large.Comment: 16 pages, 9 figures included. To be published in Phys. Rev. A, as Part II of a two-part paper. The original version of quant-ph/9906125 is shortly to be replaced by a new version which is Part I of the two-part paper. This paper (Part II) also contains some material from the original version of quant-ph/990612
    corecore