237 research outputs found

    Metabolic regulation of hepatic immunopathology by myeloid-derived suppressor cells

    Get PDF
    The liver provides a highly immunotolerant environment, that is exploited by hepatotropic viruses such as Hepatitis B virus (HBV), which establishes persistent infection in more than 350 million people worldwide. In this thesis the potential for myeloid-derived suppressor cells (MDSC) to exert metabolic regulation in this setting has been investigated. We found a mean approximate 9-fold expansion of granulocytic MDSC (gMDSC) in patients with chronic HBV infection (CHB) compared to uninfected, healthy controls (p<0.001). The most striking increases were seen in patients replicating HBV in the absence of immunopathology (p<0.01). gMDSC expressed high levels of the chemokine receptor, CXCR1, providing the potential for them to be chemoattracted by liver-derived interleukin-8 (IL-8); consistent with this, they were further enriched in the intrahepatic compartment. gMDSC from patients with CHB expressed increased amounts of arginase I, correlating with an increase in serum levels of this enzyme (p<0.01). Arginase I metabolises the conditionally essential amino acid L-arginine that is required for proliferating T cells; in line with this was an observed decrease in circulating L-arginine, particularly in those patients without liver inflammation. Liver pathology in CHB is ampli ed by the recruitment and activation of bystander (non-HBV-speci c) T cells; therefore the potential of gMDSC to down-regulate such responses was explored. Puri ed gMDSC from patients with CHB potently inhibit the expansion of bystander T cells capable of producing pro-inflammatory cytokines or mediating cytotoxicity. This inhibition was blocked using an arginase I-specific inhibitor, N-hydroxy-nor-arginine (nor-NOHA). Taken together, these data demonstrate the capacity for expanded arginase I expressing gMDSC to regulate liver immunopathology in CHB by depriving T cells of L-arginine

    Point-of-care SARS-CoV-2 serological assays for enhanced case finding in a UK inpatient population.

    Get PDF
    Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic. Case identification is currently made by real-time polymerase chain reaction (PCR) during the acute phase and largely restricted to healthcare laboratories. Serological assays are emerging but independent validation is urgently required to assess their utility. We evaluated five different point-of-care (POC) SARS-CoV-2 antibody test kits against PCR, finding concordance across the assays (n=15). We subsequently tested 200 patients using the OrientGene COVID-19 IgG/IgM Rapid Test Cassette and find a sensitivity of 74% in the early infection period (day 5-9 post symptom onset), with 100% sensitivity not seen until day 13, demonstrating inferiority to PCR testing in the infectious period. Negative rate was 96%, but in validating the serological tests uncovered potential false-negatives from PCR testing late-presenting cases. A positive predictive value (PPV) of 37% in the general population precludes any use for general screening. Where a case definition is applied however, the PPV is substantially improved (95·4%), supporting use of serology testing in carefully targeted, high-risk populations. Larger studies in specific patient cohorts, including those with mild infection are urgently required to inform on the applicability of POC serological assays to help control the spread of SARS-CoV-2 and improve case finding of patients that may experience late complications

    DDX50 Is a Viral Restriction Factor That Enhances IRF3 Activation.

    Get PDF
    The transcription factors IRF3 and NF-κB are crucial in innate immune signalling in response to many viral and bacterial pathogens. However, mechanisms leading to their activation remain incompletely understood. Viral RNA can be detected by RLR receptors, such as RIG-I and MDA5, and the dsRNA receptor TLR3. Alternatively, the DExD-Box RNA helicases DDX1-DDX21-DHX36 activate IRF3/NF-κB in a TRIF-dependent manner independent of RIG-I, MDA5, or TLR3. Here, we describe DDX50, which shares 55.6% amino acid identity with DDX21, as a non-redundant factor that promotes activation of the IRF3 signalling pathway following its stimulation with viral RNA or infection with RNA and DNA viruses. Deletion of DDX50 in mouse and human cells impaired IRF3 phosphorylation and IRF3-dependent endogenous gene expression and cytokine/chemokine production in response to cytoplasmic dsRNA (polyIC transfection), and infection by RNA and DNA viruses. Mechanistically, whilst DDX50 co-immunoprecipitated TRIF, it acted independently to the previously described TRIF-dependent RNA sensor DDX1. Indeed, shRNA-mediated depletion of DDX1 showed DDX1 was dispensable for signalling in response to RNA virus infection. Importantly, loss of DDX50 resulted in a significant increase in replication and dissemination of virus following infection with vaccinia virus, herpes simplex virus, or Zika virus, highlighting its important role as a broad-ranging viral restriction factor

    Vaccinia Virus BBK E3 Ligase Adaptor A55 Targets Importin-Dependent NF-κB Activation and Inhibits CD8+ T-Cell Memory.

    Get PDF
    Viral infection of cells is sensed by pathogen recognition receptors that trigger an antiviral innate immune response, and consequently viruses have evolved countermeasures. Vaccinia virus (VACV) evades the host immune response by expressing scores of immunomodulatory proteins. One family of VACV proteins are the BTB-BACK (broad-complex, tram-trac, and bric-a-brac [BTB] and C-terminal Kelch [BACK]) domain-containing, Kelch-like (BBK) family of predicted cullin-3 E3 ligase adaptors: A55, C2, and F3. Previous studies demonstrated that gene A55R encodes a protein that is nonessential for VACV replication yet affects viral virulence in vivo Here, we report that A55 is an NF-κB inhibitor acting downstream of IκBα degradation, preventing gene transcription and cytokine secretion in response to cytokine stimulation. A55 targets the host importin α1 (KPNA2), acting to reduce p65 binding and its nuclear translocation. Interestingly, while A55 was confirmed to coprecipitate with cullin-3 in a BTB-dependent manner, its NF-κB inhibitory activity mapped to the Kelch domain, which alone is sufficient to coprecipitate with KPNA2 and inhibit NF-κB signaling. Intradermal infection of mice with a virus lacking A55R (vΔA55) increased VACV-specific CD8+ T-cell proliferation, activation, and cytotoxicity in comparison to levels of the wild-type (WT) virus. Furthermore, immunization with vΔA55 induced increased protection to intranasal VACV challenge compared to the level with control viruses. In summary, this report describes the first target of a poxvirus-encoded BBK protein and a novel mechanism for DNA virus immune evasion, resulting in increased CD8+ T-cell memory and a more immunogenic vaccine.IMPORTANCE NF-κB is a critical transcription factor in the innate immune response to infection and in shaping adaptive immunity. The identification of host and virus proteins that modulate the induction of immunological memory is important for improving virus-based vaccine design and efficacy. In viruses, the expression of BTB-BACK Kelch-like (BBK) proteins is restricted to poxviruses and conserved within them, indicating the importance of these proteins for these medically important viruses. Using vaccinia virus (VACV), the smallpox vaccine, we report that the VACV BBK protein A55 dysregulates NF-κB signaling by disrupting the p65-importin interaction, thus preventing NF-κB translocation and blocking NF-κB-dependent gene transcription. Infection with VACV lacking A55 induces increased VACV-specific CD8+ T-cell memory and better protection against VACV challenge. Studying viral immunomodulators therefore expands not only our understanding of viral pathogenesis and immune evasion strategies but also of the immune signaling cascades controlling antiviral immunity and the development of immune memory.Wellcome Trus

    National action plans for antimicrobial resistance and variations in surveillance data platforms

    Get PDF
    Objective To assess how national antimicrobial susceptibility data used to inform national action plans vary across surveillance platforms. Methods We identified available open-access, supranational, interactive surveillance platforms and cross-checked their data in accordance with the World Health Organization’s (WHO’s) Data Quality Assurance: module 1. We compared platform usability and completeness of time-matched data on the antimicrobial susceptibilities of four blood isolate species: Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus and Streptococcus pneumoniae from WHO’s Global Antimicrobial Resistance and Use Surveillance System, European Centre for Disease Control’s (ECDC’s) network and Pfizer’s Antimicrobial Testing Leadership and Surveillance database. Using Bland–Altman analysis, paired t-tests, and Wilcoxon signed-rank tests, we assessed susceptibility data and number of isolate concordances between platforms. Findings Of 71 countries actively submitting data to WHO, 28 also submit to Pfizer’s database; 19 to ECDC; and 16 to all three platforms. Limits of agreement between WHO’s and Pfizer’s platforms for organism–country susceptibility data ranged from −26% to 35%. While mean susceptibilities of WHO’s and ECDC‘s platforms did not differ (bias: 0%, 95% confidence interval: −2 to 2), concordance between organism–country susceptibility was low (limits of agreement −18 to 18%). Significant differences exist in isolate numbers reported between WHO–Pfizer (mean of difference: 674, P-value: < 0.001 and WHO–ECDC (mean of difference: 192, P value: 0.04) platforms. Conclusion The considerable heterogeneity of nationally submitted data to commonly used antimicrobial resistance surveillance platforms compromises their validity, thus undermining local and global antimicrobial resistance strategies. Hence, we need to understand and address surveillance platform variability and its underlying mechanisms

    Characterisation and induction of tissue-resident gamma delta T-cells to target hepatocellular carcinoma

    Get PDF
    Immunotherapy is now the standard of care for advanced hepatocellular carcinoma (HCC), yet many patients fail to respond. A major unmet goal is the boosting of T-cells with both strong HCC reactivity and the protective advantages of tissue-resident memory T-cells (TRM). Here, we show that higher intratumoural frequencies of γδ T-cells, which have potential for HLA-unrestricted tumour reactivity, associate with enhanced HCC patient survival. We demonstrate that γδ T-cells exhibit bona fide tissue-residency in human liver and HCC, with γδTRM showing no egress from hepatic vasculature, persistence for >10 years and superior anti-tumour cytokine production. The Vγ9Vδ2 T-cell subset is selectively depleted in HCC but can efficiently target HCC cell lines sensitised to accumulate isopentenyl-pyrophosphate by the aminobisphosphonate Zoledronic acid. Aminobisphosphonate-based expansion of peripheral Vγ9Vδ2 T-cells recapitulates a TRM phenotype and boosts cytotoxic potential. Thus, our data suggest more universally effective HCC immunotherapy may be achieved by combining aminobisphosphonates to induce Vγ9Vδ2TRM capable of replenishing the depleted pool, with additional intratumoural delivery to sensitise HCC to Vγ9Vδ2TRM-based targeting
    • …
    corecore