62 research outputs found

    Mitochondrially-targeted APOBEC1 is a potent mtDNA mutator affecting mitochondrial function and organismal fitness in Drosophila

    Get PDF
    Abstract: Somatic mutations in the mitochondrial genome (mtDNA) have been linked to multiple disease conditions and to ageing itself. In Drosophila, knock-in of a proofreading deficient mtDNA polymerase (POLG) generates high levels of somatic point mutations and also small indels, but surprisingly limited impact on organismal longevity or fitness. Here we describe a new mtDNA mutator model based on a mitochondrially-targeted cytidine deaminase, APOBEC1. mito-APOBEC1 acts as a potent mutagen which exclusively induces C:G>T:A transitions with no indels or mtDNA depletion. In these flies, the presence of multiple non-synonymous substitutions, even at modest heteroplasmy, disrupts mitochondrial function and dramatically impacts organismal fitness. A detailed analysis of the mutation profile in the POLG and mito-APOBEC1 models reveals that mutation type (quality) rather than quantity is a critical factor in impacting organismal fitness. The specificity for transition mutations and the severe phenotypes make mito-APOBEC1 an excellent mtDNA mutator model for ageing research

    Auditory Function in the Tc1 Mouse Model of Down Syndrome Suggests a Limited Region of Human Chromosome 21 Involved in Otitis Media

    Get PDF
    Down syndrome is one of the most common congenital disorders leading to a wide range of health problems in humans, including frequent otitis media. The Tc1 mouse carries a significant part of human chromosome 21 (Hsa21) in addition to the full set of mouse chromosomes and shares many phenotypes observed in humans affected by Down syndrome with trisomy of chromosome 21. However, it is unknown whether Tc1 mice exhibit a hearing phenotype and might thus represent a good model for understanding the hearing loss that is common in Down syndrome. In this study we carried out a structural and functional assessment of hearing in Tc1 mice. Auditory brainstem response (ABR) measurements in Tc1 mice showed normal thresholds compared to littermate controls and ABR waveform latencies and amplitudes were equivalent to controls. The gross anatomy of the middle and inner ears was also similar between Tc1 and control mice. The physiological properties of cochlear sensory receptors (inner and outer hair cells: IHCs and OHCs) were investigated using single-cell patch clamp recordings from the acutely dissected cochleae. Adult Tc1 IHCs exhibited normal resting membrane potentials and expressed all K+ currents characteristic of control hair cells. However, the size of the large conductance (BK) Ca2+ activated K+ current (IK,f), which enables rapid voltage responses essential for accurate sound encoding, was increased in Tc1 IHCs. All physiological properties investigated in OHCs were indistinguishable between the two genotypes. The normal functional hearing and the gross structural anatomy of the middle and inner ears in the Tc1 mouse contrast to that observed in the Ts65Dn model of Down syndrome which shows otitis media. Genes that are trisomic in Ts65Dn but disomic in Tc1 may predispose to otitis media when an additional copy is active

    FUS and TARDBP but Not SOD1 Interact in Genetic Models of Amyotrophic Lateral Sclerosis

    Get PDF
    Mutations in the SOD1 and TARDBP genes have been commonly identified in Amyotrophic Lateral Sclerosis (ALS). Recently, mutations in the Fused in sarcoma gene (FUS) were identified in familial (FALS) ALS cases and sporadic (SALS) patients. Similarly to TDP-43 (coded by TARDBP gene), FUS is an RNA binding protein. Using the zebrafish (Danio rerio), we examined the consequences of expressing human wild-type (WT) FUS and three ALS–related mutations, as well as their interactions with TARDBP and SOD1. Knockdown of zebrafish Fus yielded a motor phenotype that could be rescued upon co-expression of wild-type human FUS. In contrast, the two most frequent ALS–related FUS mutations, R521H and R521C, unlike S57Δ, failed to rescue the knockdown phenotype, indicating loss of function. The R521H mutation caused a toxic gain of function when expressed alone, similar to the phenotype observed upon knockdown of zebrafish Fus. This phenotype was not aggravated by co-expression of both mutant human TARDBP (G348C) and FUS (R521H) or by knockdown of both zebrafish Tardbp and Fus, consistent with a common pathogenic mechanism. We also observed that WT FUS rescued the Tardbp knockdown phenotype, but not vice versa, suggesting that TARDBP acts upstream of FUS in this pathway. In addition we observed that WT SOD1 failed to rescue the phenotype observed upon overexpression of mutant TARDBP or FUS or upon knockdown of Tardbp or Fus; similarly, WT TARDBP or FUS also failed to rescue the phenotype induced by mutant SOD1 (G93A). Finally, overexpression of mutant SOD1 exacerbated the motor phenotype caused by overexpression of mutant FUS. Together our results indicate that TARDBP and FUS act in a pathogenic pathway that is independent of SOD1

    Chromosomal localization of 15 ion channel genes

    Full text link
    Several human Mendelian diseases, including the long-QT syndrome, malignant hyperthermia, and episodic ataxia/myokymia syndrome, have recently been demonstrated to be due to mutations in ion channel genes. Systematic mapping of ion channel genes may therefore reveal candidates for other heritable disorders. In this study, the GenBank and dbEST databases were used to identify members of several ion channel families (voltage-gated calcium and sodium cardiac chloride, and all classes of potassium channels). Genes and ESTs without prior map localization were identified based on GDB and OWL database information and 15 genes and ESTs were selected for mapping. Of these 15, only the serotonin receptor 5HT3R had been previously mapped to a chromosome. A somatic cell hybrid panel (SCH) was screened with an STS from each gene and, if necessary, the results verified by a second SCH panel. For three ESTs, rodent derived PCR products of the same size as the human STS precluded SCH mapping. For these three, human Pl clones were isolated and the genomic location was determined by metaphase FISH. These genes and ESTs can now be further evaluated as candidate genes for inherited cardiac, neuromuscular, and psychiatric disorders mapped to these chromosomes. Furthermore, the ESTs developed in this study can be used to isolate genomic clones, enabling the determination of each transcript's genomic structure and physical map location. This approach may also be applicable to other gene families and may aid in the identification of candidate genes for groups of related heritable disorders.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45548/1/11188_2006_Article_BF02369898.pd

    Anticodon-dependent aminoacylation of a noncognate tRNA with isoleucine, valine, and phenylalanine in vivo.

    No full text

    Neurally expressed Drosophila genes encoding homologs of the NSF and SNAP secretory proteins.

    No full text
    • …
    corecore