56,355 research outputs found

    Noise-assisted Mound Coarsening in Epitaxial Growth

    Full text link
    We propose deposition noise to be an important factor in unstable epitaxial growth of thin films. Our analysis yields a geometrical relation H=(RWL)^2 between the typical mound height W, mound size L, and the film thickness H. Simulations of realistic systems show that the parameter R is a characteristic of the growth conditions, and generally lies in the range 0.2-0.7. The constancy of R in late-stage coarsening yields a scaling relation between the coarsening exponent 1/z and the mound height exponent \beta which, in the case of saturated mound slope, gives \beta = 1/z = 1/4.Comment: 4 pages, RevTex Macros, 3 eps figure

    Slow Atomic Motion in Zr-Ti-Cu-Ni-Be Metallic Glasses Studied by NMR

    Get PDF
    Nuclear magnetic resonance is used for the first time to detect slow atomic motion in metallic glasses, specifically, Be motion in Zr-Ti-Cu-Ni-Be bulk metallic glasses. The observations are not consistent with the vacancy-assisted and interstitial diffusion mechanisms and favor the spread-out free volume fluctuation mechanism for Be diffusion. Comparison with the results of Be diffusion measured by elastic backscattering the NMR results also indicates that the energy barriers for short- and long-range Be motion are the same

    Structure of excited vortices with higher angular momentum in Bose-Einstein condensates

    Full text link
    The structure of vortices in Bose-Einstein condensed atomic gases is studied taking into account many-body correlation effects. It is shown that for excited vortices the particle density in the vortex core increases as the angular momentum of the system increases. The core density can increase by several times with only a few percent change in the angular momentum. This result provides an explanation for the observations in which the measured angular momentum is higher than the estimation based on counting the number of vortices, and the visibility of the vortex cores is simultaneously reduced. The calculated density profiles for the excited vortices are in good agreement with experimental measurements.Comment: 4 pages, 1 figur

    Coulomb interaction and transient charging of excited states in open nanosystems

    Full text link
    We obtain and analyze the effect of electron-electron Coulomb interaction on the time dependent current flowing through a mesoscopic system connected to biased semi-infinite leads. We assume the contact is gradually switched on in time and we calculate the time dependent reduced density operator of the sample using the generalized master equation. The many-electron states (MES) of the isolated sample are derived with the exact diagonalization method. The chemical potentials of the two leads create a bias window which determines which MES are relevant to the charging and discharging of the sample and to the currents, during the transient or steady states. We discuss the contribution of the MES with fixed number of electrons N and we find that in the transient regime there are excited states more active than the ground state even for N=1. This is a dynamical signature of the Coulomb blockade phenomenon. We discuss numerical results for three sample models: short 1D chain, 2D lattice, and 2D parabolic quantum wire.Comment: 12 pages, 12 figure

    Novel Precursors for Boron Nanotubes: The Competition of Two-Center and Three-Center Bonding in Boron Sheets

    Full text link
    We present a new class of boron sheets, composed of triangular and hexagonal motifs, that are more stable than structures considered to date and thus are likely to be the precursors of boron nanotubes. We describe a simple and clear picture of electronic bonding in boron sheets and highlight the importance of three-center bonding and its competition with two-center bonding, which can also explain the stability of recently discovered boron fullerenes. Our findings call for reconsideration of the literature on boron sheets, nanotubes, and clusters.Comment: 4 pages, 4 figures, 1 tabl

    Dynamic communicability predicts infectiousness

    Get PDF
    Using real, time-dependent social interaction data, we look at correlations between some recently proposed dynamic centrality measures and summaries from large-scale epidemic simulations. The evolving network arises from email exchanges. The centrality measures, which are relatively inexpensive to compute, assign rankings to individual nodes based on their ability to broadcast information over the dynamic topology. We compare these with node rankings based on infectiousness that arise when a full stochastic SI simulation is performed over the dynamic network. More precisely, we look at the proportion of the network that a node is able to infect over a fixed time period, and the length of time that it takes for a node to infect half the network.We find that the dynamic centrality measures are an excellent, and inexpensive, proxy for the full simulation-based measures
    • …
    corecore