198 research outputs found

    Biodiversity conservation, ecosystem services and organic viticulture: A glass half-full

    Get PDF
    Organic farming is a promising but still debated option to ensure sustainable agriculture. However, whether organic farming fosters synergies or mitigates tradeoffs between biodiversity, ecosystem services and crop production has rarely been quantified. Here, we investigate relationships between multitrophic diversity (14 taxa above and belowground), yield, natural pest control and soil quality (14 proxies of ecosystem services) in organic and conventional vineyards along a landscape gradient. Organic farming enhanced biodiversity and pest control, but decreased wine production. Compared to conventional systems, multitrophic diversity was 15 % higher, and pest control services were 9 % higher in organic systems, while wine production was 11 % lower. Regardless of management type, we found a strong tradeoff between wine production and pest control, but not between wine production and biodiversity. The landscape context was not a strong moderator of organic farming effects across taxa groups and ecosystem services, but affected specific taxa and ecosystem services, especially natural pest control. Our study reveals that wine production and biodiversity conservation do not necessarily exclude each other, which implies the existence of a safe operating space where biodiversity and wine production can be combined. We conclude that organic farming can contribute to improve the sustainability of viticulture, but needs to be complemented by management options at the local and landscape scales in order to fully balance biodiversity conservation with the simultaneous provision of multiple ecosystem services.This research was funded by the research project SECBIVIT, which was funded through the 2017–2018 Belmont Forum and BiodivERsA joint call for research proposals, under the BiodivScen ERA-Net COFUND program, with the funding organizations: Agencia Estatal de Investigación (Ministerio de Ciencia e Innovación/Spain, grant PCI2018-092938; MCIN/AEI/10.13039/501100011033); Austrian Science Fund (FWF) (grant number I 4025-B32); Federal Ministry of Education and Research (BMBF/Germany) (grant number 031A349I); French National Research Agency (ANR); Netherlands Organization for Scientific Research (NWO); National Science Foundation (grant #1850943); and Romanian Executive Agency for Higher Education, Research, Development, and Innovation Funding (UEFISCDI). The authors also acknowledge the support of the ECOPHYTO 2+ Plan under the grant X4IN33VI (OPERA project) as well as the support the French National Research Agency (ANR) under the grant 20-PCPA-0010 (PPR Vitae, Cultivating the grapevine without pesticides: towards agroecological wine-producing socio-ecosystems). We thank Evelyne Thys and Hugo Hernandez for their help in field sampling, Lionel Delbac for the Lobesia botrana rearing, Alexis Saintilan for identifying pollinators, and Edith Gruber for identifying earthworms

    Trifoliata Flying Dragon: Porta-enxerto para plantios adensados e irrigados de laranjeiras doces de alta produtividade e sustentabilidade.

    Get PDF
    bitstream/item/77671/1/Comunicado-152.pdf(Embrapa Mandioca e Fruticultura. Comunicado técnico, 152)

    Effect of Alemtuzumab (CAMPATH 1-H) in patients with inclusion-body myositis

    Get PDF
    Sporadic inclusion-body myositis (sIBM) is the most common disabling, adult-onset, inflammatory myopathy histologically characterized by intense inflammation and vacuolar degeneration. In spite of T cell-mediated cytotoxicity and persistent, clonally expanded and antigen-driven endomysial T cells, the disease is resistant to immunotherapies. Alemtuzumab is a humanized monoclonal antibody that causes an immediate depletion or severe reduction of peripheral blood lymphocytes, lasting at least 6 months. We designed a proof-of-principle study to examine if one series of Alemtuzumab infusions in sIBM patients depletes not only peripheral blood lymphocytes but also endomysial T cells and alters the natural course of the disease. Thirteen sIBM patients with established 12-month natural history data received 0.3 mg/kg/day Alemtuzumab for 4 days. The study was powered to capture ≥10% increase strength 6 months after treatment. The primary end-point was disease stabilization compared to natural history, assessed by bi-monthly Quantitative Muscle Strength Testing and Medical Research Council strength measurements. Lymphocytes and T cell subsets were monitored concurrently in the blood and the repeated muscle biopsies. Alterations in the mRNA expression of inflammatory, stressor and degeneration-associated molecules were examined in the repeated biopsies. During a 12-month observation period, the patients’ total strength had declined by a mean of 14.9% based on Quantitative Muscle Strength Testing. Six months after therapy, the overall decline was only 1.9% (P < 0.002), corresponding to a 13% differential gain. Among those patients, four improved by a mean of 10% and six reported improved performance of daily activities. The benefit was more evident by the Medical Research Council scales, which demonstrated a decline in the total scores by 13.8% during the observation period but an improvement by 11.4% (P < 0.001) after 6 months, reaching the level of strength recorded 12 months earlier. Depletion of peripheral blood lymphocytes, including the naive and memory CD8+ cells, was noted 2 weeks after treatment and persisted up to 6 months. The effector CD45RA+CD62L­ cells, however, started to increase 2 months after therapy and peaked by the 4th month. Repeated muscle biopsies showed reduction of CD3 lymphocytes by a mean of 50% (P < 0.008), most prominent in the improved patients, and reduced mRNA expression of stressor molecules Fas, Mip-1a and αB-crystallin; the mRNA of desmin, a regeneration-associated molecule, increased. This proof-of-principle study provides insights into the pathogenesis of inclusion-body myositis and concludes that in sIBM one series of Alemtuzumab infusions can slow down disease progression up to 6 months, improve the strength of some patients, and reduce endomysial inflammation and stressor molecules. These encouraging results, the first in sIBM, warrant a future study with repeated infusions (Clinical Trials. Gov NCT00079768)

    Two-Photon Imaging of Calcium in Virally Transfected Striate Cortical Neurons of Behaving Monkey

    Get PDF
    Two-photon scanning microscopy has advanced our understanding of neural signaling in non-mammalian species and mammals. Various developments are needed to perform two-photon scanning microscopy over prolonged periods in non-human primates performing a behavioral task. In striate cortex in two macaque monkeys, cortical neurons were transfected with a genetically encoded fluorescent calcium sensor, memTNXL, using AAV1 as a viral vector. By constructing an extremely rigid and stable apparatus holding both the two-photon scanning microscope and the monkey's head, single neurons were imaged at high magnification for prolonged periods with minimal motion artifacts for up to ten months. Structural images of single neurons were obtained at high magnification. Changes in calcium during visual stimulation were measured as the monkeys performed a fixation task. Overall, functional responses and orientation tuning curves were obtained in 18.8% of the 234 labeled and imaged neurons. This demonstrated that the two-photon scanning microscopy can be successfully obtained in behaving primates

    Neurexins and Neuroligins: Recent Insights from Invertebrates

    Get PDF
    During brain development, each neuron must find and synapse with the correct pre- and postsynaptic partners. The complexity of these connections and the relatively large distances some neurons must send their axons to find the correct partners makes studying brain development one of the most challenging, and yet fascinating disciplines in biology. Furthermore, once the initial connections have been made, the neurons constantly remodel their dendritic and axonal arbours in response to changing demands. Neurexin and neuroligin are two cell adhesion molecules identified as important regulators of this process. The importance of these genes in the development and modulation of synaptic connectivity is emphasised by the observation that mutations in these genes in humans have been associated with cognitive disorders such as Autism spectrum disorders, Tourette syndrome and Schizophrenia. The present review will discuss recent advances in our understanding of the role of these genes in synaptic development and modulation, and in particular, we will focus on recent work in invertebrate models, and how these results relate to studies in mammals
    corecore