10,754 research outputs found

    From ‘As Good as Gold’ to ‘Gold Diggers’: Farming Women and the Survival of British Family Farming

    Get PDF
    The survival of family farming in British agriculture has long been a topic of interest for rural researchers and is undergoing something of a current renewal of interest. However, insights from feminist approaches remain underutilised despite the crucial role farming women continue to play in family farming. This article addresses the unity of farm, family and business by interpreting it as a patriarchal way of life. An ethnographically informed repeated life history methodology is employed to study in detail the family members of seven farms in rural mid-Wales. Findings show that the recent survival of the family farms investigated has been heavily dependent upon compliance with a patriarchal ideology that demands that women be ‘as good as gold’. However, it is discovered that a new view of women is emerging in the world of British family farming, that of ‘gold digger’. Women entering relationships with farming men are increasingly being considered a threat to farm survival by virtue of their entitlements if the relationship breaks down. The necessity to study the intricacies of personal relationships in family farming has important implications for most future research into this form of agricultural business arrangement

    High-order regularized regression in Electrical Impedance Tomography

    Full text link
    We present a novel approach for the inverse problem in electrical impedance tomography based on regularized quadratic regression. Our contribution introduces a new formulation for the forward model in the form of a nonlinear integral transform, that maps changes in the electrical properties of a domain to their respective variations in boundary data. Using perturbation theory the transform is approximated to yield a high-order misfit unction which is then used to derive a regularized inverse problem. In particular, we consider the nonlinear problem to second-order accuracy, hence our approximation method improves upon the local linearization of the forward mapping. The inverse problem is approached using Newton's iterative algorithm and results from simulated experiments are presented. With a moderate increase in computational complexity, the method yields superior results compared to those of regularized linear regression and can be implemented to address the nonlinear inverse problem

    Consensus Acceleration in Multiagent Systems with the Chebyshev Semi-Iterative Method

    No full text
    We consider the fundamental problem of reaching consensus in multiagent systems; an operation required in many applications such as, among others, vehicle formation and coordination, shape formation in modular robotics, distributed target tracking, and environmental modeling. To date, the consensus problem (the problem where agents have to agree on their reported values) has been typically solved with iterative decentralized algorithms based on graph Laplacians. However, the convergence of these existing consensus algorithms is often too slow for many important multiagent applications, and thus they are increasingly being combined with acceleration methods. Unfortunately, state-of-the-art acceleration techniques require parameters that can be optimally selected only if complete information about the network topology is available, which is rarely the case in practice. We address this limitation by deriving two novel acceleration methods that can deliver good performance even if little information about the network is available. The first proposed algorithm is based on the Chebyshev semi-iterative method and is optimal in a well defined sense; it maximizes the worst-case convergence speed (in the mean sense) given that only rough bounds on the extremal eigenvalues of the network matrix are available. It can be applied to systems where agents use unreliable communication links, and its computational complexity is similar to those of simple Laplacian-based methods. This algorithm requires synchronization among agents, so we also propose an asynchronous version that approximates the output of the synchronous algorithm. Mathematical analysis and numerical simulations show that the convergence speed of the proposed acceleration methods decrease gracefully in scenarios where the sole use of Laplacian-based methods is known to be impractical

    The PSF.p54nrb complex is a novel Mnk substrate that binds the mRNA for tumor necrosis factor alpha

    No full text
    To identify new potential substrates for the MAP kinase signal-integrating kinases (Mnks), we employed a proteomic approach. The Mnks are targeted to the translational machinery through their interaction with the cap-binding initiation factor complex. We tested whether proteins retained on cap resin were substrates for the Mnks in vitro, and identified one such protein as PSF (the PTB (polypyrimidine tract-binding protein)-associated splicing factor). Mnks phosphorylate PSF at two sites in vitro, and our data show that PSF is an Mnk substrate in vivo. We also demonstrate that PSF, together with its partner, p54nrb, binds RNAs that contain AU-rich elements (AREs), such as those for proinflammatory cytokines (e.g. tumor necrosis factor ? (TNF?)). Indeed, PSF associates specifically with the TNF? mRNA in living cells. PSF is phosphorylated at two sites by the Mnks. Our data show that Mnk-mediated phosphorylation increases the binding of PSF to the TNF? mRNA in living cells. These findings identify a novel Mnk substrate. They also suggest that the Mnk-catalyzed phosphorylation of PSF may regulate the fate of specific mRNAs by modulating their binding to PSF·p54nrb

    Emotional modulation of visual cortex activity: A functional nearinfrared spectroscopy study

    Get PDF
    Functional neuroimaging and electroencephalography reveal emotional effects in early visual cortex. Here, we used fNIRS to examine haemodynamic responses evoked by neutral, positive and negative emotional pictures, matched for brightness, contrast, hue, saturation, spatial frequency and entropy. Emotion content modulated amplitude and latency of oxy-, deoxy- and total haemoglobin response peaks, and induced peripheral autonomic reactions. The processing of positive and negative pictures enhanced haemodynamic response amplitude, and this effect was paralleled by blood pressure changes. The processing of positive pictures was reflected in reduced haemodynamic response peak latency. Together these data suggest early visual cortex holds amplitude-dependent representation of stimulus salience and latency-dependent information regarding stimulus valence, providing new insight into affective interaction with sensory processing

    The Application of CRISPR Technology to High Content Screening in Primary Neurons

    Get PDF
    Axon growth is coordinated by multiple interacting proteins that remain incompletely characterized. High content screening (HCS), in which manipulation of candidate genes is combined with rapid image analysis of phenotypic effects, has emerged as a powerful technique to identify key regulators of axon outgrowth. Here we explore the utility of a genome editingapproach referred to as CRISPR (Clustered Regularly Interspersed Palindromic Repeats) for knockout screening in primary neurons. In the CRISPR approach a DNA-cleaving Cas enzyme is guided to genomic target sequences by user-created guide RNA (sgRNA), where it initiates a double-stranded break that ultimately results in frameshift mutation and loss of protein production. Using electroporation of plasmid DNA that co-expresses Cas9enzyme and sgRNA, we first verified the ability of CRISPR targeting to achieve protein-level knockdown in cultured postnatal cortical neurons. Targeted proteins included NeuN (RbFox3) and PTEN, a well-studied regulator of axon growth. Effective knockdown lagged at least four days behind transfection, but targeted proteins were eventually undetectable by immunohistochemistry in \u3e 80% of transfected cells. Consistent with this, anti-PTEN sgRNA produced no changes in neurite outgrowth when assessed three days post-transfection. When week-long cultures were replated, however, PTEN knockdown consistently increased neurite lengths. These CRISPR-mediated PTEN effects were achieved using multi-well transfection and automated phenotypic analysis, indicating the suitability of PTEN as a positive control for future CRISPR-based screening efforts. Combined, these data establish an example of CRISPR-mediated protein knockdown in primary cortical neurons and its compatibility with HCS workflows
    corecore