3 research outputs found

    VLBI observations of GRB 201015A, a relatively faint GRB with a hint of very high-energy gamma-ray emission

    No full text
    Context. A total of four long-duration gamma-ray bursts (GRBs) have been confirmed at very high-energy (≥100GeV) with high significance, and any possible peculiarities of these bursts will become clearer as the number of detected events increases. Multi-wavelength follow-up campaigns are required to extract information on the physical conditions within the jets that lead to the very high-energy counterpart, hence they are crucial to reveal the properties of this class of bursts. Aims. GRB 201015A is a long-duration GRB detected using the MAGIC telescopes from ~40 s after the burst. If confirmed, this would be the fifth and least luminous GRB ever detected at these energies. The goal of this work is to constrain the global and microphysical parameters of its afterglow phase, and to discuss the main properties of this burst in a broader context. Methods. Since the radio band, together with frequent optical and X-ray observations, proved to be a fundamental tool for overcoming the degeneracy in the afterglow modelling, we performed a radio follow-up of GRB 201015A over 12 different epochs, from 1.4 days (2020 October 17) to 117 days (2021 February 9) post-burst, with the Karl G. Jansky Very Large Array, e-MERLIN, and the European VLBI Network. We include optical and X-ray observations, performed respectively with the Multiple Mirror Telescope and the Chandra X-ray Observatory, together with publicly available data, in order to build multi-wavelength light curves and to compare them with the standard fireball model. Results. We detected a point-like transient, consistent with the position of GRB 201015A until 23 and 47 days post-burst at 1.5 and 5 GHz, respectively. No emission was detected in subsequent radio observations. The source was also detected in optical (1.4 and 2.2 days post-burst) and in X-ray (8.4 and 13.6 days post-burst) observations. Conclusions. The multi-wavelength afterglow light curves can be explained with the standard model for a GRB seen on-axis, which expands and decelerates into a medium with a homogeneous density. A circumburst medium with a wind-like profile is disfavoured. Notwithstanding the high resolution provided by the VLBI, we could not pinpoint any expansion or centroid displacement of the outflow. If the GRB is seen at the viewing angle θ that maximises the apparent velocity βapp (i.e. θ ~ βapp-1), we estimate that the Lorentz factor for the possible proper motion is Гα ≤ 40 in right ascension and Гδ ≤ 61 in declination. On the other hand, if the GRB is seen on-axis, the size of the afterglow is ≤5pc and ≤16pc at 25 and 47 days. Finally, the early peak in the optical light curve suggests the presence of a reverse shock component before 0.01 days from the burst

    A search for the afterglows, kilonovae, and host galaxies of two short GRBs: GRB 211106A and GRB 211227A

    No full text
    Context. GRB 211106A and GRB 211227A are two recent gamma-ray bursts (GRBs) whose initial X-ray position enabled us to possibly associate them with bright, low-redshift galaxies (z < 0.7). The prompt emission properties suggest that GRB 211106A is a genuine short-duration GRB and GRB 211227A is a short GRB with extended emission. Therefore, they are likely to be produced by a compact binary merger. However, a classification based solely on the prompt emission properties can be misleading. Aims. The possibility of having two short GRBs occurring in the local Universe makes them ideal targets for the search of associated kilonova (KN) emission and for detailed studies of the host galaxy properties. Methods. We carried out deep optical and near-infrared (NIR) follow-up with the ESO-VLT FORS2, HAWK-I, and MUSE instruments for GRB 211106A and with ESO-VLT FORS2 and X-shooter for GRB 211227A, starting from hours after the X-ray afterglow discovery up to days later. We performed photometric analysis to look for afterglow and KN emissions associated with the bursts, together with imaging and spectroscopic observations of the host galaxy candidates. We compared the results obtained from the optical/NIR observations with the available Swift X-Ray Telescope (XRT) and others high-energy data of both events. Results. For both GRBs we placed deep limits to the optical/NIR afterglow and KN emission. We identified their associated host galaxies, GRB 211106A at a photometric redshift z = 0.64, GRB 211227A at a spectroscopic z = 0.228. From MUSE and X-shooter spectra we derived the host galaxy properties, which turned out to be consistent with short GRBs typical hosts. We also compared the properties of GRB 211106A and GRB 211227A with those of the short GRBs belonging to the S-BAT4 sample, here extended up to December 2021, in order to further investigate the nature of these two bursts. Conclusions. Our study of the prompt and afterglow phase of the two GRBs, together with the analysis of their associated host galaxies, allows us to confirm the classification of GRB 211106A as a short GRB, and GRB 211227A as a short GRB with extended emission. The absence of an optical/NIR counterpart down to deep magnitude limits is likely due to high local extinction for GRB 211106A and a peculiarly faint kilonova for GRB 211227A.</p

    Observation of the Gamma-Ray Binary HESS J0632+057 with the HESS, MAGIC, and VERITAS Telescopes

    No full text
    The results of gamma-ray observations of the binary system HESS J0632 + 057 collected during 450 hr over 15 yr, between 2004 and 2019, are presented. Data taken with the atmospheric Cherenkov telescopes H.E.S.S., MAGIC, and VERITAS at energies above 350 GeV were used together with observations at X-ray energies obtained with Swift-XRT, Chandra, XMM-Newton, NuSTAR, and Suzaku. Some of these observations were accompanied by measurements of the Hα emission line. A significant detection of the modulation of the very high-energy gamma-ray fluxes with a period of 316.7 4.4 days is reported, consistent with the period of 317.3 0.7 days obtained with a refined analysis of X-ray data. The analysis of data from four orbital cycles with dense observational coverage reveals short-timescale variability, with flux-decay timescales of less than 20 days at very high energies. Flux variations observed over a timescale of several years indicate orbit-to-orbit variability. The analysis confirms the previously reported correlation of X-ray and gamma-ray emission from the system at very high significance, but cannot find any correlation of optical Hα parameters with fluxes at X-ray or gamma-ray energies in simultaneous observations. The key finding is that the emission of HESS J0632 + 057 in the X-ray and gamma-ray energy bands is highly variable on different timescales. The ratio of gamma-ray to X-ray flux shows the equality or even dominance of the gamma-ray energy range. This wealth of new data is interpreted taking into account the insufficient knowledge of the ephemeris of the system, and discussed in the context of results reported on other gamma-ray binary systems
    corecore