13 research outputs found

    Systemic delivery of E6/7 siRNA using novel lipidic particles and its application with cisplatin in cervical cancer mouse models

    Get PDF
    Small interfering RNA (siRNA) shows great promise in cancer therapy, but its effectiveness in vivo still remains a crucial issue for its transition into the clinics. Although the successful use of polyethylene glycol (PEG)ylated lipidic delivery systems have already been reported, most of the formulation procedures used are labour intensive and also result in unstable end products. We have previously developed a simple yet efficient hydration-of-freeze-dried- matrix (HFDM) method to entrap siRNA within lipid particles, in which the products exhibited superior stability. Here, we show that these HFDM-formulated particles are stable in the presence of serum and can deliver siRNA efficiently to tumours after intravenous administration. Using these particles, around 50% knockdown of the target gene expression was observed in tumours. With the use of siRNA targeting the E6/7 oncogenes expressed in cervical cancer, we showed a 50% reduction in tumour size. This level of tumour growth suppression was comparable to that achieved from cisplatin at the clinically used dose. Overall, our results demonstrate the feasibility of using HFDM-formulated particles to systematically administer E6/7-targeted siRNA for cervical cancer treatment. The simplicity of preparation procedure along with superior product stability obtained from our method offers an innovative approach for the in vivo delivery of siRNA

    RNA interference against human papillomavirus oncogenes in cervical cancer cells results in increased sensitivity to cisplatin

    No full text
    Targeted inhibition of oncogenes in tumor cells is a rational approach toward the development of cancer therapies based on RNA interference (RNAi). Tumors caused by human papillomavirus (HPV) infection are an ideal model system for RNAi-based cancer therapies because the oncogenes that cause cervical cancer, E6 and E7, are expressed only in cancerous cells. We investigated whether targeting HPV E6 and E7 oncogenes yields cancer cells more sensitive to chemotherapy by cisplatin, the chemotherapeutic agent currently used for the treatment of advanced cervical cancer. We have designed siRNAs directed against the HPV E6 oncogene that simultaneously targets both E6 and E7, which results in an 80% reduction in E7 protein and reactivation of the p53 pathway. The loss of E6 and E7 resulted in a reduction in cellular viability concurrent with the induction of cellular senescence. Interference was specific in that no effect on HPV-negative cells was observed. We demonstrate that RNAi against E6 and E7 oncogenes enhances the chemotherapeutic effect of cisplatin in HeLa cells. The IC50 for HeLa cells treated with cisplatin was 9.4 mu M, but after the addition of a lentivirus-delivered shRNA against E6, the IC50 was reduced almost 4-fold to 2.4 mu M. We also observed a decrease in E7 expression with a concurrent increase in p53 protein levels upon cotreatment with shRNA and cisplatin over that seen with individual treatment alone. Our results provide strong evidence that loss of E6 and E7 results in increased sensitivity to cisplatin, probably because of increased p53 levels

    Inhibition of cervical cancer cell growth in vitro and in vivo with lentiviral-vector delivered short hairpin RNA targeting human papillomavirus E6 and E7 oncogenes

    No full text
    In this study, we investigated the suppressive effect of a short hairpin RNA delivered by a lentiviral vector (LV-shRNA) against human papillomavirus (HPV) type 18 E6 on the expression of the oncogenes E6 and E7 in cervical cancer HeLa cells both in vitro and in vivo. The LV-shRNA effectively delivered the shRNA to HeLa cells and lead to a dose-dependent reduction of E7 protein and the stabilization of E6 target proteins, p53 and p21. Low-dose infection of HeLa cells with LV-shRNA caused reduced cell growth and the induction of senescence, whereas a high-dose infection resulted in specific cell death via apoptosis. Transplant of HeLa cells infected with a low dose of LV-shRNA into Rag-/-mice significantly reduced the tumor weight, whereas transplant of cells infected with a high dose resulted in a complete loss of tumor growth. Systemic delivery of LV-shRNA into mice with established HeLa cell lung metastases led to a significant reduction in the number of tumor nodules. Our data collectively suggest that lentiviral delivery is an effective way to achieve stable suppression of E6/E7 oncogene expression and induce inhibition of tumor growth both in vitro and in vivo. These results encourage further investigation of this form of RNA interference as a promising treatment for cervical cancer

    Development of a novel method for formulating stable siRNA-loaded lipid particles for In vivo use

    No full text
    Purpose: A simple yet novel method was developed to prepare stable PEGylated siRNA-loaded lipid particles which are suitable for in vivo use. Methods: PEGylated siRNA-loaded lipid particles were formulated by hydration of a freeze-dried matrix. The effect of various formulation parameters on the size and homogeneity of resulting particles was studied. Particles prepared using this method were compared to those prepared using an established post-insertion procedure for the entrapment efficiency, stability, in vitro biological activity as well as in vivo biodistribution. Results: Using this hydration method, a particle size of less than 200 nm can be obtained with high siRNA entrapment efficiency (>90%) and high gene-silencing efficiency. Following intravenous administration into mice, these particles achieved a similar degree of accumulation in subcutaneous tumours but displayed less liver uptake compared to the post-insertion formulations. Importantly, in contrast to post-insertion preparations, particles made by hydration method retained 100% of their gene-silencing efficiency after storage at room temperature for 1 month. Conclusions: This paper describes a simple method of formulating PEGylated siRNA-loaded lipid particles. Given the ease of preparation, long term stability and favourable characteristics for in vivo delivery, our work represents an advance in lipid formulation of siRNA for in vivo use

    Attempts at immortalization of crustacean primary cell cultures using human cancer genes

    No full text
    Primary cell cultures from crustacea have been initiated since the 1960s, yet no permanent cell line is available. Primary cells have a limited proliferative capacity in culture due to cellular senescence, which is regulated by a group of dominant senescence genes. The aim of this research was to manipulate cell cycle regulation by transfecting Cherax quadricarinatus primary cells with oncogenes, in an effort to induce a permanent cell line. Human papillomaviruses (HPV) play a critical role in the formation of anogenital cancer. Research has demonstrated that the HPV-expressed E6 and E7 proteins function concomitantly to disrupt the p53 and retinoblastoma (Rb) tumor suppressor genes, regulators of the cell-cycle checkpoints at the first gap (G1) phase. HPV E6 and E7 genes were transfected into the C. quadricarinatus cells by lipofection. Successful transfection was demonstrated by the presence of oncogene messenger RNA by reverse transciptase polymerase chain reaction. At day 150, transfected cells still remain viable, although cell proliferation was stagnant. It may be that while transfection of the oncogenes was successful, no proliferation of the C. quadricarinatus cells was evident due to a lack of telomere maintenance

    Structure and dynamics of multiple cationic vectors-siRNA complexation by all-atomic molecular dynamics simulations

    No full text
    Understanding the molecular mechanism of gene condensation is a key component to rationalizing gene delivery phenomena, including functional properties such as the stability of the gene-vector complex and the intracellular release of the gene. In this work, we adopt an atomistic molecular dynamics simulation approach to study the complexation of short strand duplex RNA with four cationic carrier systems of varying charge and surface topology at different charge ratios. At lower charge ratios, polymers bind quite effectively to siRNA, while at high charge ratios, the complexes are saturated and there are free polymers that are unable to associate with RNA. We also observed reduced fluctuations in RNA structures when complexed with multiple polymers in solution as compared to both free siRNA in water and the single polymer complexes. These novel simulations provide a much better understanding of key mechanistic aspects of gene-polycation complexation and thereby advance progress toward rational design of nonviral gene delivery systems

    Poly-L-lysine functionalized large pore cubic mesostructured silica nanoparticles as biocompatible carriers for gene delivery

    No full text
    Large pore mesoporous silica nanoparticles (LP-MSNs) functionalized with poly-L-lysine (PLL) were designed as a new carrier material for gene delivery applications. The synthesized LP-MSNs are 100-200 nm in diameter and are composed of cage-like pores organized in a cubic mesostructure. The size of the cavities is about 28 nm with an entrance size of 13.4 nm. Successful grafting of PLL onto the silica surface through covalent immobilization was confirmed by X-ray photoelectron spectroscopy, solid-state (13)C magic-angle spinning nuclear magnetic resonance, Fourier transformed infrared, and thermogravimetric analysis. As a result of the particle modification with PLL, a significant increase of the nanoparticle binding capacity for oligo-DNAs was observed compared to the native unmodified silica particles. Consequently, PLL-functionalized nanoparticles exhibited a strong ability to deliver oligo DNA-Cy3 (a model for siRNA) to Hela cells. Furthermore, PLL-functionalized nanoparticles were proven to be superior as gene carriers compared to amino-functionalized nanoparticles and the native nanoparticles. The system was tested to deliver functional siRNA against minibrain-related kinase and polo-like kinase 1 in osteosarcoma cancer cells. Here, the functionalized particles demonstrated great potential for efficient gene transfer into cancer cells as a decrease of the cellular viability of the osteosarcoma cancer cells was induced. Moreover, the PLL-modified silica nanoparticles also exhibit a high biocompatibility, with low cytotoxicity observed up to 100 μg/mL.Sandy B. Hartono, Wenyi Gu, Freddy Kleitz, Jian Liu, Lizhong He, Anton P. J. Middelberg, Chengzhong Yu, Gao Qing (Max) Lu, and Shi Zhang Qia
    corecore