61 research outputs found

    The effects of hip muscle strengthening on knee load, pain, and function in people with knee osteoarthritis: a protocol for a randomised, single-blind controlled trial

    Get PDF
    BACKGROUND: Lower limb strengthening exercises are an important component of the treatment for knee osteoarthritis (OA). Strengthening the hip abductor and adductor muscles may influence joint loading and/or OA-related symptoms, but no study has evaluated these hypotheses directly. The aim of this randomised, single-blind controlled trial is to determine whether hip abductor and adductor muscle strengthening can reduce knee load and improve pain and physical function in people with medial compartment knee OA. METHODS/DESIGN: 88 participants with painful, radiographically confirmed medial compartment knee OA and varus alignment will be recruited from the community and randomly allocated to a hip strengthening or control group using concealed allocation stratified by disease severity. The hip strengthening group will perform 6 exercises to strengthen the hip abductor and adductor muscles at home 5 times per week for 12 weeks. They will consult with a physiotherapist on 7 occasions to be taught the exercises and progress exercise resistance. The control group will be requested to continue with their usual care. Blinded follow up assessment will be conducted at 12 weeks after randomisation. The primary outcome measure is the change in the peak external knee adduction moment measured during walking. Questionnaires will assess changes in pain and physical function as well as overall perceived rating of change. An intention-to-treat analysis will be performed using linear regression modelling and adjusting for baseline outcome values and other demographic characteristics. DISCUSSION: Results from this trial will contribute to the evidence regarding the effect of hip strengthening on knee loads and symptoms in people with medial compartment knee OA. If shown to reduce the knee adduction moment, hip strengthening has the potential to slow disease progression. TRIAL REGISTRATION: Australia New Zealand Clinical Trials Registry ACTR12607000001493

    Efficacy of customised foot orthoses in the treatment of achilles tendinopathy : study protocol for a randomised trial

    Get PDF
    BACKGROUND: Achilles tendinopathy is a common condition that can cause marked pain and disability. Numerous non-surgical treatments have been proposed for the treatment of this condition, but many of these treatments have a poor or non-existent evidence base. The exception to this is eccentric calf muscle exercises, which have become a standard non-surgical intervention for Achilles tendinopathy. Foot orthoses have also been advocated as a treatment for Achilles tendinopathy, but the long-term efficacy of foot orthoses for this condition is unknown. This manuscript describes the design of a randomised trial to evaluate the efficacy of customised foot orthoses to reduce pain and improve function in people with Achilles tendinopathy. METHODS: One hundred and forty community-dwelling men and women aged 18 to 55 years with Achilles tendinopathy (who satisfy inclusion and exclusion criteria) will be recruited. Participants will be randomised, using a computer-generated random number sequence, to either a control group (sham foot orthoses made from compressible ethylene vinyl acetate foam) or an experimental group (customised foot orthoses made from semi-rigid polypropylene). Both groups will be prescribed a calf muscle eccentric exercise program, however, the primary difference between the groups will be that the experimental group receive customised foot orthoses, while the control group receive sham foot orthoses. The participants will be instructed to perform eccentric exercises 2 times per day, 7 days per week, for 12 weeks. The primary outcome measure will be the total score of the Victorian Institute of Sport Assessment - Achilles (VISA-A) questionnaire. The secondary outcome measures will be participant perception of treatment effect, comfort of the foot orthoses, use of co-interventions, frequency and severity of adverse events, level of physical activity and health-related quality of life (assessed using the Short-Form-36 questionnaire - Version two). Data will be collected at baseline, then at 1, 3, 6 and 12 months. Data will be analysed using the intention to treat principle. DISCUSSION: This study is the first randomised trial to evaluate the long-term efficacy of customised foot orthoses for the treatment of Achilles tendinopathy. The study has been pragmatically designed to ensure that the study findings are generalisable to clinical practice. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry Number: ACTRN12609000829213

    Effect of foot orthoses on lower extremity kinetics during running: a systematic literature review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Throughout the period of one year, approximately 50% of recreational runners will sustain an injury that disrupts their training regimen. Foot orthoses have been shown to be clinically effective in the prevention and treatment of several running-related conditions, yet the physical effect of this intervention during running remains poorly understood. The aim of this literature review was therefore to evaluate the effect of foot orthoses on lower extremity forces and pressure (kinetics) during running.</p> <p>Methods</p> <p>A systematic search of electronic databases including Medline (1966-present), CINAHL, SportDiscus, and The Cochrane Library occurred on 7 May 2008. Eligible articles were selected according to pre-determined criteria. Methodological quality was evaluated by use of the Quality Index as described by Downs & Black, followed by critical analysis according to outcome variables.</p> <p>Results</p> <p>The most widely reported kinetic outcomes were loading rate and impact force, however the effect of foot orthoses on these variables remains unclear. In contrast, current evidence suggests that a reduction in the rearfoot inversion moment is the most consistent kinetic effect of foot orthoses during running.</p> <p>Conclusion</p> <p>The findings of this review demonstrate systematic effects that may inform the direction of future research, as further evidence is required to define the mechanism of action of foot orthoses during running. Continuation of research in this field will enable targeting of design parameters towards biomechanical variables that are supported by evidence, and may lead to advancements in clinical efficacy.</p

    Foot posture in people with medial compartment knee osteoarthritis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Foot posture has long been considered to contribute to the development of lower limb musculoskeletal conditions as it may alter the mechanical alignment and dynamic function of the lower limb. This study compared foot posture in people with and without medial compartment knee osteoarthritis (OA) using a range of clinical foot measures. The reliability of the foot measures was also assessed.</p> <p>Methods</p> <p>The foot posture of 32 patients with clinically and radiographically-confirmed OA predominantly in the medial compartment of the knee and 28 asymptomatic age-matched healthy controls was investigated using the foot posture index (FPI), vertical navicular height and drop, and the arch index. Independent t tests and effect size (Cohen's d) were used to investigate the differences between the groups in the foot posture measurements.</p> <p>Results</p> <p>Significant differences were found between the control and the knee OA groups in relation to the FPI (1.35 ± 1.43 vs. 2.46 ± 2.18, p = 0.02; <it>d </it>= 0.61, medium effect size), navicular drop (0.02 ± 0.01 vs. 0.03 ± 0.01, p = 0.01; <it>d </it>= 1.02, large effect size) and the arch index (0.22 ± 0.04 vs. 0.26 ± 0.04, p = 0.04; <it>d </it>= 1.02, large effect size). No significant difference was found for vertical navicular height (0.24 ± 0.03 vs. 0.23 ± 0.03, p = 0.54; <it>d </it>= 0.04, negligible effect size).</p> <p>Conclusion</p> <p>People with medial compartment knee OA exhibit a more pronated foot type compared to controls. It is therefore recommended that the assessment of patients with knee OA in clinical practice should include simple foot measures, and that the potential influence of foot structure and function on the efficacy of foot orthoses in the management of medial compartment knee OA be further investigated.</p

    Changes in bone marrow lesions in response to weight-loss in obese knee osteoarthritis patients: a prospective cohort study

    Get PDF
    BACKGROUND: Patients are susceptible for knee osteoarthritis (KOA) with increasing age and obesity and KOA is expected to become a major disabling disease in the future. An important feature of KOA on magnetic resonance imaging (MRI) is changes in the subchondral bone, bone marrow lesions (BMLs), which are related to the future degeneration of the knee joint as well as prevalent clinical symptoms. The aim of this study was to investigate the changes in BMLs after a 16-week weight-loss period in obese subjects with KOA and relate changes in BMLs to the effects of weight-loss on clinical symptoms. METHODS: This prospective cohort study included patients with a body mass index ≥ 30 kg/m(2), an age ≥ 50 years and primary KOA. Patients underwent a 16 weeks supervised diet program which included formula products and dietetic counselling (ClinicalTrials.gov: NCT00655941). BMLs in tibia and femur were assessed on MRI before and after the weight-loss using the Boston-Leeds Osteoarthritis Knee Score. Response to weight-loss in BML scores was dichotomised to patients experiencing a decrease in BML scores (responders) and patients who did not (non-responders). The association of BMLs to weight-loss was assessed by logistic regressions and correlation analyses. RESULTS: 39 patients (23%) were classified as responders in the sum of all BML size scores whereas 130 patients (77%) deteriorated or remained stable and were categorized as non-responders. Logistic regression analyses revealed no association between weight-loss < or ≥ 10% and response in BMLs in the most affected compartment (OR 1.86 [CI 0.66 to 5.26, p=0.24]). There was no association between weight-loss and response in maximum BML score (OR 1.13 [CI 0.39 to 3.28, p=0.81]). The relationship between changes in BMLs and clinical symptoms revealed that an equal proportion of patients classified as BML responders and non-responders experienced an OMERACT-OARSI response (69 vs. 71%, p=0.86). CONCLUSIONS: Weight-loss did not improve the sum of tibiofemoral BML size scores or the maximum tibiofemoral BML score, suggesting that BMLs do not respond to a rapidly decreased body weight. The missing relationship between clinical symptoms and BMLs calls for further investigation

    The PICO project: aquatic exercise for knee osteoarthritis in overweight and obese individuals

    Full text link

    Markerless motion capture through visual hull and articulated icp using subject specific models

    No full text
    An approach for accurately measuring human motion through Markerless Motion Capture (MMC) is presented. The method uses multiple color cameras and combines an accurate and anatomically consistent tracking algorithm with a method for automatically generating subject specific models. The tracking approach employed a Levenberg-Marquardt minimization scheme over an iterative closest point algorithm with six degrees of freedom for each body segment. Anatomical consistency was maintained by enforcing rotational and translational joint range of motion constraints for each specific joint. A subject specific model of the subjects was obtained through an automatic model generation algorithm (Corazza et al. in IEEE Trans. Biomed. Eng., 2009) which combines a space of human shapes (Anguelov et al. in Proceedings SIGGRAPH, 2005) with biomechanically consistent kinematic models and a pose-shape matching algorithm. There were 15 anatomical body segments and 14 joints, each with six degrees of freedom (13 and 12, respectively for the HumanEva II dataset). The overall method is an improvement over (Mundermann et al. in Proceedings of CVPR, 2007) in terms of both accuracy and robustness. Since the method was originally developed for a parts per thousand yen8 cameras, the method performance was tested both (i) on the HumanEva II dataset (Sigal and Black, Technical Report CS-06-08, 2006) in a 4 camera configuration, (ii) on a series of motions including walking trials, a very challenging gymnastic motion and a dataset with motions similar to HumanEva II but with variable number of cameras
    corecore