166 research outputs found

    DNA in nanopore-counterion condensation and coion depletion

    Full text link
    Molecular dynamics simulations are used to study the equilibrium distribution of monovalent ions in a nanopore connecting two water reservoirs separated by a membrane, both for the empty pore and that with a single stranded DNA molecule inside. In the presence of DNA, the counterions condense on the stretched macromolecule effectively neutralizing it, and nearly complete depletion of coions from the pore is observed. The implications of our results for experiments on DNA translocation through alpha-hemolysin nanopores are discussed.Comment: 8 pages, 2 figure

    Bilayer-spanning DNA nanopores with voltage-switching between open and closed state.

    Get PDF
    Membrane-spanning nanopores from folded DNA are a recent example of biomimetic man-made nanostructures that can open up applications in biosensing, drug delivery, and nanofluidics. In this report, we generate a DNA nanopore based on the archetypal six-helix-bundle architecture and systematically characterize it via single-channel current recordings to address several fundamental scientific questions in this emerging field. We establish that the DNA pores exhibit two voltage-dependent conductance states. Low transmembrane voltages favor a stable high-conductance level, which corresponds to an unobstructed DNA pore. The expected inner width of the open channel is confirmed by measuring the conductance change as a function of poly(ethylene glycol) (PEG) size, whereby smaller PEGs are assumed to enter the pore. PEG sizing also clarifies that the main ion-conducting path runs through the membrane-spanning channel lumen as opposed to any proposed gap between the outer pore wall and the lipid bilayer. At higher voltages, the channel shows a main low-conductance state probably caused by electric-field-induced changes of the DNA pore in its conformation or orientation. This voltage-dependent switching between the open and closed states is observed with planar lipid bilayers as well as bilayers mounted on glass nanopipettes. These findings settle a discrepancy between two previously published conductances. By systematically exploring a large space of parameters and answering key questions, our report supports the development of DNA nanopores for nanobiotechnology.The SH lab is supported by the Leverhulme Trust (RPG-170), UCL Chemistry, EPSRC (Institutional Sponsorship Award), the National Physical Laboratory, and Oxford Nanopore Technologies. KG acknowledges funding from the Winton Program of Physics for Sustainability, Gates Cambridge and the Oppenheimer Trust. UFK was supported by an ERC starting grant #261101.This is the final version of the article. It was first published by ACS under the ACS AuthorChoice license at http://dx.doi.org/10.1021/nn5039433 This permits copying and redistribution of the article or any adaptations for non-commercial purposes

    Dendrimers in Nanoscale Confinement: The Interplay between Conformational Change and Nanopore Entrance

    Get PDF
    Hyperbranched dendrimers are nanocarriers for drugs, imaging agents, and catalysts. Their nanoscale confinement is of fundamental interest and occurs when dendrimers with bioactive payload block or pass biological nanochannels or when catalysts are entrapped in inorganic nanoporous support scaffolds. The molecular process of confinement and its effect on dendrimer conformations are, however, poorly understood. Here, we use single-molecule nanopore measurements and molecular dynamics simulations to establish an atomically detailed model of pore dendrimer interactions. We discover and explain that electrophoretic migration of polycationic PAMAM dendrimers into confined space is not dictated by the diameter of the branched molecules but by their size and generation-dependent compressibility. Differences in structural flexibility also rationalize the apparent anomaly that the experimental nanopore current read-out depends in nonlinear fashion on dendrimer size. Nanoscale confinement is inferred to reduce the protonation of the polycationic structures. Our model can likely be expanded to other dendrimers and be applied to improve the analysis of biophysical experiments, rationally design functional materials such as nanoporous filtration devices or nanoscale drug carriers that effectively pass biological pores

    Manipulating Biopolymer Dynamics by Anisotropic Nanoconfinement

    Full text link
    How the geometry of nano-sized confinement affects dynamics of biomaterials is interesting yet poorly understood. An elucidation of structural details upon nano-sized confinement may benefit manufacturing pharmaceuticals in biomaterial sciences and medicine. The behavior of biopolymers in nano-sized confinement is investigated using coarse-grained models and molecular simulations. Particularly, we address the effects of shapes of a confinement on protein folding dynamics by measuring folding rates and dissecting structural properties of the transition states in nano-sized spheres and ellipsoids. We find that when the form of a confinement resembles the geometrical properties of the transition states, the rates of folding kinetics are most enhanced. This knowledge of shape selectivity in identifying optimal conditions for reactions will have a broad impact in nanotechnology and pharmaceutical sciences.Comment: to appear in Nano Letter

    The NTD Nanoscope: potential applications and implementations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nanopore transduction detection (NTD) offers prospects for a number of highly sensitive and discriminative applications, including: (i) single nucleotide polymorphism (SNP) detection; (ii) targeted DNA re-sequencing; (iii) protein isoform assaying; and (iv) biosensing via antibody or aptamer coupled molecules. Nanopore event transduction involves single-molecule biophysics, engineered information flows, and nanopore cheminformatics. The NTD Nanoscope has seen limited use in the scientific community, however, due to lack of information about potential applications, and lack of availability for the device itself. Meta Logos Inc. is developing both pre-packaged device platforms and component-level (unassembled) kit platforms (the latter described here). In both cases a lipid bi-layer workstation is first established, then augmentations and operational protocols are provided to have a nanopore transduction detector. In this paper we provide an overview of the NTD Nanoscope applications and implementations. The NTD Nanoscope Kit, in particular, is a component-level reproduction of the standard NTD device used in previous research papers.</p> <p>Results</p> <p>The NTD Nanoscope method is shown to functionalize a single nanopore with a channel current modulator that is designed to transduce events, such as binding to a specific target. To expedite set-up in new lab settings, the calibration and troubleshooting for the NTD Nanoscope kit components and signal processing software, the NTD Nanoscope Kit, is designed to include a set of test buffers and control molecules based on experiments described in previous NTD papers (the model systems briefly described in what follows). The description of the Server-interfacing for advanced signal processing support is also briefly mentioned.</p> <p>Conclusions</p> <p>SNP assaying, SNP discovery, DNA sequencing and RNA-seq methods are typically limited by the accuracy of the error rate of the enzymes involved, such as methods involving the polymerase chain reaction (PCR) enzyme. The NTD Nanoscope offers a means to obtain higher accuracy as it is a single-molecule method that does not inherently involve use of enzymes, using a functionalized nanopore instead.</p

    Stability and efficiency of a CMOS sensor as detector of low energy beta and gamma particles

    Get PDF
    Radio Guided Surgery (RGS) is a nuclear medicine technique allowing the surgeon to identify tumor residuals in real time with a millimetric resolution, thanks to a radiopharmaceutical as tracer and a probe as detector. The use of beta(-) emitters, instead of gamma or beta(+), has been recently proposed with the aim to increase the technique sensitivity and reducing both the administered activity to the patient and the medical exposure. In this paper, the possibility to use the commercial CMOS Image Sensor MT9V115, originally designed for visible light imaging, as beta(-) radiation detector RGS is discussed. Being crucial characteristics in a surgical environment, in particular its stability against time, operating temperature, integration time and gain has been studied on laboratory measurements. Moreover, a full Monte Carlo simulation of the detector has been developed. Its validation against experimental data allowed us to obtain efficiency curves for both beta and gamma particles, and also to evaluate the effect of the covering heavy resin protective layer that is present in the "off the shelf" detector. This study suggests that a dedicated CMOS Image Sensor (i.e. one produced without the covering protective layer) represents the ideal candidate detector for RGS, able to massively increase the amount of application cases and the efficacy of this technique

    Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG

    Get PDF
    Curli are functional amyloid fibres that constitute the major protein component of the extracellular matrix in pellicle biofilms formed by Bacteroidetes and Proteobacteria (predominantly of the α and γ classes). They provide a fitness advantage in pathogenic strains and induce a strong pro-inflammatory response during bacteraemia. Curli formation requires a dedicated protein secretion machinery comprising the outer membrane lipoprotein CsgG and two soluble accessory proteins, CsgE and CsgF. Here we report the X-ray structure of Escherichia coli CsgG in a non-lipidated, soluble form as well as in its native membrane-extracted conformation. CsgG forms an oligomeric transport complex composed of nine anticodon-binding-domain-like units that give rise to a 36-stranded β-barrel that traverses the bilayer and is connected to a cage-like vestibule in the periplasm. The transmembrane and periplasmic domains are separated by a 0.9-nm channel constriction composed of three stacked concentric phenylalanine, asparagine and tyrosine rings that may guide the extended polypeptide substrate through the secretion pore. The specificity factor CsgE forms a nonameric adaptor that binds and closes off the periplasmic face of the secretion channel, creating a 24,000 Å(3) pre-constriction chamber. Our structural, functional and electrophysiological analyses imply that CsgG is an ungated, non-selective protein secretion channel that is expected to employ a diffusion-based, entropy-driven transport mechanism

    DNA Charge Transport: Conformationally Gated Hopping through Stacked Domains

    Full text link
    corecore