2,953 research outputs found

    Better Synchronizability Predicted by Crossed Double Cycle

    Full text link
    In this brief report, we propose a network model named crossed double cycles, which are completely symmetrical and can be considered as the extensions of nearest-neighboring lattices. The synchronizability, measured by eigenratio RR, can be sharply enhanced by adjusting the only parameter, crossed length mm. The eigenratio RR is shown very sensitive to the average distance LL, and the smaller average distance will lead to better synchronizability. Furthermore, we find that, in a wide interval, the eigenratio RR approximately obeys a power-law form as RL1.5R\sim L^{1.5}.Comment: 4 pages, 5 figure

    Class of exactly solvable SO(n) symmetric spin chains with matrix product ground states

    Full text link
    We introduce a class of exactly solvable SO(n) symmetric Hamiltonians with matrix product ground states. For an odd n3n\geq 3 case, the ground state is a translational invariant Haldane gap spin liquid state; while for an even n4n\geq 4 case, the ground state is a spontaneously dimerized state with twofold degeneracy. In the matrix product ground states for both cases, we identify a hidden antiferromagnetic order, which is characterized by nonlocal string order parameters. The ground-state phase diagram of a generalized SO(n) symmetric bilinear-biquadratic model is discussed.Comment: 11 pages, 5 figure

    Multi-phase SPH modelling of air effect on the dynamic flooding of a damaged cabin

    Get PDF
    The air flow may take effects on the responses of the damaged ship in the dynamic flooding process. It not only relates to the amount of inflow but also the stability of the ship. In order to accurately predict the responses of a damaged ship, it is essential to take the air into account. In this study, a multi-phase SPH model combined with a dummy boundary method is proposed. One of the advantages of the new SPH model in solving this nonlinear problem is that, it does not rely on other algorithms to track the interface of different phases but can easily deal with breaking, splashing and mixing. The stability and accuracy of the numerical model are verified by comparing with experimental and published numerical results. The air captured in the flooding process is further studied with focus on the exchange of air and water near the opening. Finally, the effects of the sizes and number of the deck openings on the air flow are analyzed. It is found that the air flow can reduce the kinematic energy of inflow water, leading to decreases in the dynamic moment formed by the flooding water and sinking rate of damaged cabin

    Hybrid type-I InAs/GaAs and type-II GaSb/GaAs quantum dot structure with enhanced photoluminescence

    Get PDF
    We investigate the photoluminescence (PL) properties of a hybrid type-I InAs/GaAs and type-II GaSb/GaAs quantum dot (QD) structure grown in a GaAs matrix by molecular beam epitaxy. This hybrid QD structure exhibits more intense PL with a broader spectral range, compared with control samples that contain only InAs or GaSb QDs. This enhanced PL performance is attributed to additional electron and hole injection from the type-I InAs QDs into the adjacent type-II GaSb QDs. We confirm this mechanism using time-resolved and power-dependent PL. These hybrid QD structures show potential for high efficiency QD solar cell applications

    Furanodiene alters mitochondrial function in doxorubicin-resistant MCF-7 human breast cancer cells in an AMPK-dependent manner

    Get PDF
    Furanodiene is a bioactive sesquiterpene isolated from the spice-producing Curcuma wenyujin plant (Y. H. Chen and C. Ling) (C. wenyujin), which is a commonly prescribed herb used in clinical cancer therapy by modern practitioners of traditional Chinese medicine. Previously, we have shown that furanodiene inhibits breast cancer cell growth both in vitro and in vivo, however, the mechanism for this effect is not yet known. In this study, therefore, we asked (1) whether cultured breast cancer cells made resistant to the chemotherapeutic agent doxorubicin (DOX) via serial selection protocols are susceptible to furanodiene\u27s anticancer effect, and (2) whether AMP-activated protein kinase (AMPK), which is a regulator of cellular energy homeostasis in eukaryotic cells, participates in this effect. We show here (1) that doxorubicin-resistant MCF-7 (MCF-7/DOXR) cells treated with furanodiene exhibit altered mitochondrial function and reduced levels of ATP, resulting in apoptotic cell death, and (2) that AMPK is central to this effect. In these cells, furanodiene (as opposed to doxorubicin) noticeably affects the phosphorylation of AMPK and AMPK pathway intermediates, ACLY and GSK-3β, suggesting that furanodiene reduces mitochondrial function and cellular ATP levels by way of AMPK activation. Finally, we find that the cell permeable agent and AMPK inhibitor compound C (CC), abolishes furanodiene-induced anticancer activity in these MCF-7/DOXR cells, with regard to cell growth inhibition and AMPK activation; in contrast, AICAR (5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside, acadesine), an AMPK activator, augments furanodiene-induced anticancer activity. Furthermore, specific knockdown of AMPK in MCF-7/DOXR cells protects these cells from furanodiene-induced cell death. Taken together, these findings suggest that AMPK and its pathway intermediates are promising therapeutic targets for treating chemoresistant breast cancer, and that furanodiene may be an important chemical agent incorporated in next-generation chemotherapy protocols

    Twist-3 Distribute Amplitude of the Pion in QCD Sum Rules

    Full text link
    We apply the background field method to calculate the moments of the pion two-particles twist-3 distribution amplitude (DA) ϕp(ξ)\phi_p(\xi) in QCD sum rules. In this paper,we do not use the equation of motion for the quarks inside the pion since they are not on shell and introduce a new parameter m0pm_0^p to be determined. We get the parameter m0p1.30GeVm_0^p\approx1.30GeV in this approach. If assuming the expansion of ϕp(ξ)\phi_p(\xi) in the series in Gegenbauer polynomials Cn1/2(ξ)C_n^{1/2}(\xi), one can obtain its approximate expression which can be determined by its first few moments.Comment: 12 pages, 3 figure

    Smoothed particle hydrodynamics (SPH) model for coupled analysis of a damaged ship with internal sloshing in beam seas

    Get PDF
    The flooding of a damaged ship in waves is a complex process, often coupled with the internal and external liquid motion together with the ship hull motion. Paramount to the operation safety, in order to improve the prediction accuracy of ship motion during the flooding process, the strip theory is applied to study the dynamic response of the damaged ship in beam seas; a smoothed particle hydrodynamics (SPH) model is developed to consider the coupling effects of various factors including internal sloshing of intact cabins and damaged cabins and external waves. The numerical wave tank with a perfectly matched layer absorbing boundary condition is established and validated by the experimental results. The detailed sensitivity study is carried out focusing on the effects of damaged opening sizes, the relative position of opening, and the incident wave and the liquid loading conditions on the dynamic response of the damaged ship in regular beam waves. It is observed that the flooding process was slowed down and interrupted by the water exchanges at the damaged opening due to the dynamic motion. Compared with the opening facing the incident wave, the back one endangered the ship pronouncedly with large amplitude and frequency roll motion. It is also revealed that the liquid tank in the damaged ship imposes a significant influence on its rolling response. It is further demonstrated that the present SPH model is capable of handling the nonlinear phenomenon in a flooding process of a damaged ship

    A new spectrometer using multiple gratings with a two-dimensional charge-coupled diode array detector

    Get PDF
    A new spectrometer with no moving parts uses a two-dimensional Si-based charge-coupled diode (CCD) array detector and an integrated grating consisting of three subgratings. The effective spectral range imaged on the detector is magnified threefold. The digitized spectral image in the 200–1000 nm wavelength range can be measured quickly. The nonlinear relationship between CCD pixel position and wavelength is corrected with multiple polynomial functions in the calibration procedure, which fits the data using a mathematical pattern-analysis method. The instrument can be applied for rapid spectroscopicdata analyses in many types of photoelectronic experiments and routine testing

    Cardiac CT perfusion imaging of pericoronary adipose tissue (PCAT) highlights potential confounds in coronary CTA

    Full text link
    Features of pericoronary adipose tissue (PCAT) assessed from coronary computed tomography angiography (CCTA) are associated with inflammation and cardiovascular risk. As PCAT is vascularly connected with coronary vasculature, the presence of iodine is a potential confounding factor on PCAT HU and textures that has not been adequately investigated. Use dynamic cardiac CT perfusion (CCTP) to inform contrast determinants of PCAT assessment. From CCTP, we analyzed HU dynamics of territory-specific PCAT, myocardium, and other adipose depots in patients with coronary artery disease. HU, blood flow, and radiomics were assessed over time. Changes from peak aorta time, Pa, chosen to model the time of CCTA, were obtained. HU in PCAT increased more than in other adipose depots. The estimated blood flow in PCAT was ~23% of that in the contiguous myocardium. Comparing PCAT distal and proximal to a significant stenosis, we found less enhancement and longer time-to-peak distally. Two-second offsets [before, after] Pa resulted in [ 4-HU, 3-HU] differences in PCAT. Due to changes in HU, the apparent PCAT volume reduced ~15% from the first scan (P1) to Pa using a conventional fat window. Comparing radiomic features over time, 78% of features changed >10% relative to P1. CCTP elucidates blood flow in PCAT and enables analysis of PCAT features over time. PCAT assessments (HU, apparent volume, and radiomics) are sensitive to acquisition timing and the presence of obstructive stenosis, which may confound the interpretation of PCAT in CCTA images. Data normalization may be in order.Comment: 13 pages, 8 figure
    corecore