2,218 research outputs found
Recommended from our members
Search for lepton flavour violation in the eÎź continuum with the ATLAS detector in âs = 7 TeV pp collisions at the LHC
This paper presents a search for the t-channel exchange of an R-parity violating scalar top quark (t) in the e^Âą Îź^â continuum using 2.1 fb^(â1) of data collected by the ATLAS detector in âs = 7 TeV pp collisions at the Large Hadron Collider. Data are found to be consistent with the expectation from the Standard Model backgrounds. Limits on R-parity-violating couplings at 95 % C.L. are calculated as a function of the scalar top mass (mt). The upper limits on the production cross section for pp â eÎźX, through the t-channel exchange of a scalar top quark, ranges from 170 fb for m_t=95 GeV to 30 fb for m_t=1000 GeV
Recommended from our members
A search for tt resonances with the ATLAS detector in 2.05 fb^(â1) of proton-proton collisions at âs =7 TeV
A search for top quark pair resonances in final states containing at least one electron or muon has been performed with the ATLAS experiment at the CERN Large Hadron Collider. The search uses a data sample corresponding to an integrated luminosity of 2.05 fb^(â1), which was recorded in 2011 at a proton-proton centre-of-mass energy of 7 TeV. No evidence for a resonance is found and limits are set on the production cross-section times branching ratio to tt for narrow and wide resonances. For narrow ZⲠbosons, the observed 95 % Bayesian credibility level limits range from 9.3 pb to 0.95 pb for masses in the range of m_(Zâ˛)=500 GeV to m_(Zâ˛)=1300 GeV. The corresponding excluded mass region for a leptophobic topcolour ZⲠboson (Kaluza-Klein gluon excitation in the Randall-Sundrum model) is m_(Zâ˛)<880 GeV (m_(gKK)< 1130 GeV)
Recommended from our members
Measurement of dijet production with a veto on additional central jet activity in pp collisions at âs = 7TeV using the ATLAS detector
A measurement of jet activity in the rapidity interval bounded by a dijet system is presented. Events are vetoed if a jet with transverse momentum greater than 20 GeV is found between the two boundary jets. The fraction of dijet events that survive the jet veto is presented for boundary jets that are separated by up to six units of rapidity and with mean transverse momentum 50â<âp_Tâ<â500 GeV. The mean multiplicity of jets above the veto scale in the rapidity interval bounded by the dijet system is also presented as an alternative method for quantifying perturbative QCD emission. The data are compared to a next-to-leading order plus parton shower prediction from the powheg-box, an all-order resummation using the hej calculation and the pythia, herwig++ and alpgen event generators. The measurement was performed using pp collisions at âs=7 TeV using data recorded by the ATLAS detector in 2010
RhoA function in lamellae formation and migration is regulated by the alpha6beta4 integrin and cAMP metabolism
Clone A colon carcinoma cells develop fan-shaped lamellae and exhibit random migration when plated on laminin, processes that depend on the ligation of the alpha6beta4 integrin. Here, we report that expression of a dominant negative RhoA (N19RhoA) in clone A cells inhibited alpha6beta4-dependent membrane ruffling, lamellae formation, and migration. In contrast, expression of a dominant negative Rac (N17Rac1) had no effect on these processes. Using the Rhotekin binding assay to assess RhoA activation, we observed that engagement of alpha6beta4 by either antibody-mediated clustering or laminin attachment resulted in a two- to threefold increase in RhoA activation, compared with cells maintained in suspension or plated on collagen. Antibody-mediated clustering of beta1 integrins, however, actually suppressed Rho A activation. The alpha6beta4-mediated interaction of clone A cells with laminin promoted the translocation of RhoA from the cytosol to membrane ruffles at the edges of lamellae and promoted its colocalization with beta1 integrins, as assessed by immunofluorescence microscopy. In addition, RhoA translocation was blocked by inhibiting phosphodiesterase activity and enhanced by inhibiting the activity of cAMP-dependent protein kinase. Together, these results establish a specific integrin-mediated pathway of RhoA activation that is regulated by cAMP and that functions in lamellae formation and migration
Release of cAMP gating by the alpha6beta4 integrin stimulates lamellae formation and the chemotactic migration of invasive carcinoma cells
The alpha6beta4 integrin promotes carcinoma in-vasion by its activation of a phosphoinositide 3-OH (PI3-K) signaling pathway (Shaw, L.M., I. Rabinovitz, H.H.-F. Wang, A. Toker, and A.M. Mercurio. Cell. 91: 949-960). We demonstrate here using MDA-MB-435 breast carcinoma cells that alpha6beta4 stimulates chemotactic migration, a key component of invasion, but that it has no influence on haptotaxis. Stimulation of chemotaxis by alpha6beta4 expression was observed in response to either lysophosphatidic acid (LPA) or fibroblast conditioned medium. Moreover, the LPA-dependent formation of lamellae in these cells is dependent upon alpha6beta4 expression. Both lamellae formation and chemotactic migration are inhibited or gated by cAMP and our results reveal that a critical function of alpha6beta4 is to suppress the intracellular cAMP concentration by increasing the activity of a rolipram-sensitive, cAMP-specific phosphodiesterase (PDE). This PDE activity is essential for lamellae formation, chemotactic migration and invasion based on data obtained with PDE inhibitors. Although PI3-K and cAMP-specific PDE activities are both required to promote lamellae formation and chemotactic migration, our data indicate that they are components of distinct signaling pathways. The essence of our findings is that alpha6beta4 stimulates the chemotactic migration of carcinoma cells through its ability to influence key signaling events that underlie this critical component of carcinoma invasion
Three-body decay of Be
Three-body correlations for the ground-state decay of the lightest two-proton
emitter Be are studied both theoretically and experimentally. Theoretical
studies are performed in a three-body hyperspherical-harmonics cluster model.
In the experimental studies, the ground state of Be was formed following
the decay of a C beam inelastically excited through
interactions with Be and C targets. Excellent agreement between theory and
experiment is obtained demonstrating the existence of complicated correlation
patterns which can elucidate the structure of Be and, possibly, of the
A=6 isobar.Comment: 17 pages, 21 figures, 5 table
CLASH-VLT: Strangulation of cluster galaxies in MACSJ0416.1-2403 as seen from their chemical enrichment
(abridged) We explore the Frontier Fields cluster MACS J0416.1-2403 at
z=0.3972 with VIMOS/VLT spectroscopy from the CLASH-VLT survey covering a
region which corresponds to almost three virial radii. We measure fluxes of 5
emission lines of 76 cluster members enabling us to unambiguously derive O/H
gas metallicities, and also SFRs from Halpha. For intermediate massses we find
a similar distribution of cluster and field galaxies in the MZR and mass vs.
sSFR diagrams. Bulge-dominated cluster galaxies have on average lower sSFRs and
higher O/Hs compared to their disk-dominated counterparts. We use the location
of galaxies in the projected velocity vs. position phase-space to separate our
cluster sample into a region of objects accreted longer time ago and a region
of recently accreted and infalling galaxies. We find a higher fraction of
accreted metal-rich galaxies (63%) compared to the fraction of 28% of
metal-rich galaxies in the infalling regions. Intermediate mass galaxies
falling into the cluster for the first time are found to be in agreement with
predictions of the fundamental metallicity relation. In contrast, for already
accreted star-forming galaxies of similar masses, we find on average
metallicities higher than predicted by the models. This trend is intensified
for accreted cluster galaxies of the lowest mass bin, that display
metallicities 2-3 times higher than predicted by models with primordial gas
inflow. Environmental effects therefore strongly influence gas regulations and
control gas metallicities of log(M/Msun)<10.2 (Salpeter IMF) cluster galaxies.
We also investigate chemical evolutionary paths of model galaxies with and
without inflow of gas showing that strangulation is needed to explain the
higher metallicities of accreted cluster galaxies. Our results favor a
strangulation scenario in which gas inflow stops for log(M/Msun)<10.2 galaxies
when accreted by the cluster.Comment: Version better matched to the published version, including table with
observed and derived quantities for the 76 cluster galaxie
- âŚ