4,911 research outputs found

    Analytical and experimental investigation of aircraft metal structures reinforced with filamentary composites. Phase 3: Major component development

    Get PDF
    Analytical and experimental investigations, performed to establish the feasibility of reinforcing metal aircraft structures with advanced filamentary composites, are reported. Aluminum-boron-epoxy and titanium-boron-epoxy were used in the design and manufacture of three major structural components. The components were representative of subsonic aircraft fuselage and window belt panels and supersonic aircraft compression panels. Both unidirectional and multidirectional reinforcement concepts were employed. Blade penetration, axial compression, and inplane shear tests were conducted. Composite reinforced structural components designed to realistic airframe structural criteria demonstrated the potential for significant weight savings while maintaining strength, stability, and damage containment properties of all metal components designed to meet the same criteria

    Temperature distribution in an aircraft tire at low ground speeds

    Get PDF
    An experimental study was conducted to define temperature profiles of 22 x 5.5, type 7, bias ply aircraft tires subjected to freely rolling, yawed rolling, and light braking conditions. Temperatures along the inner wall of freely rolling tires were greater than those near the outer surface. The effect of increasing tire deflection was to increase the temperature within the shoulder and sidewall areas of the tire carcass. The effect of cornering and braking was to increase the treat temperature. For taxi operations at fixed yaw angles, temperature profiles were not symmetric. Increasing the ground speed produced only moderate increases in tread temperature, whereas temperatures in the carcass shoulder and sidewall were essentially unaffected

    Friction characteristics of three 30 by 11.5-14.5, type 8, aircraft tires with various tread groove patterns and rubber compounds

    Get PDF
    A test program was conducted to evaluate friction performance and wear characteristics on wet runways of three 30 x 11.5-14.5, type, aircraft tires having two different tread patterns and natural rubber contents. All test tires had the standard three circumferential groove tread, but two had molded transverse grooves which extended from shoulder to shoulder. The tread rubber content of the two tires with transverse grooves differed in that one had a 100 percent natural rubber tread and the other had a rubber tread composition that was 30 percent synthetic and 70 percent natural. The third test tire had the conventional 100 percent natural rubber tread. Results indicate that the differences in tire tread design and rubber composition do not significantly affect braking and cornering friction capability on wet or dry surfaces. Braking performance of the tires decreases with increased speed, with increased yaw angle and, at higher speeds, with increased wetness of the surface

    Thermophysical properties of parahydrogen from the freezing liquid line to 5000 R for pressures to 10000 psia

    Get PDF
    The tables include entropy, enthalpy, internal energy, density, volume, speed of sound, specific heat, thermal conductivity, viscosity, thermal diffusivity, Prandtl number, and the dielectric constant for 65 isobars. Quantities of special utility in heat transfer and thermodynamic calculations are also included in the isobaric tables. In addition to the isobaric tables, tables for the saturated vapor and liquid are given, which include all of the above properties, plus the surface tension. Tables for the P-T of the freezing liquid, index of refraction, and the derived Joule-Thomson inversion curve are also presented

    Lunar penetrometer Patent

    Get PDF
    Development and characteristics of pentrometer for measuring physical properties of lunar surfac

    Power and Propulsion Element (PPE) Spacecraft Reference Trajectory Document

    Get PDF
    This document captures example reference trajectories for the PPE including a reference delivery orbit and orbit maintenance, an example cislunar orbit transfer and end-of-mission (EOM) disposal trajectory. The flexibility of electric propulsion offers, by its low thrust nature, multiple different trajectory options to transfer from one orbit to another. The trajectories captured in this document are representative examples of a low thrust transfer from the NRHO and to multiple cislunar orbits. This document provides a consistent set of data from mission design to be used in the design of the vehicle capable of flying the trajectory described. The data in this document will be used to create conference papers. In order to do so, we are ending this document through for external release

    \u3cem\u3eUnited States v. Barthelmess Ranch Corporation\u3c/em\u3e: You Can Lead Livestock to Water, but Does That Give You the Right to a Claim?

    Get PDF
    Did the Water Court err in granting partial summary judgment to the United States as claimant of state-law water rights on federal grazing lands managed by the Bureau of Land Management for purposes of stock watering
    • …
    corecore