4,930 research outputs found

    Young children's referent selection is guided by novelty for both words and actions

    Get PDF
    Young children are biased to select novel, name-unknown objects as referents of novel labels (e.g., Markman, 1990) and similarly favour novel, action-unknown objects as referents of novel actions (Riggs, Mather, Hyde & Simpson, 2015). What process underlies these common behaviors? In the case of word learning, children may be driven by a novelty bias favouring novel objects as referents (Horst, Samuelson, Kucker & McMurray, 2011). Our study investigates this bias further by investigating whether novelty also affects children’s selection of novel objects when a new action is given. In a pre-exposure session, 40, three- and four-year-olds were shown eight novel objects for one minute. In subsequent referent selection trials children were shown two pre-exposed and one super-novel object and heard either a novel name or saw a novel action. The super-novel object was selected significantly more that the pre-exposed objects on both word and action trials. Our data add to the growing literature suggesting that an endogenous attentional bias to novelty plays a role in children’s referent selection and demonstrates further parallels between word and action learning

    Quantitative evaluation of polymer gel dosimeters by broadband ultrasound attenuation

    Get PDF
    Ultrasound has been examined previously as an alternative readout method for irradiated polymer gel dosimeters, with authors reporting varying dose response to ultrasound transmission measurements. In this current work we extend previous work to measure the broadband ultrasound attenuation (BUA) response of irradiated PAGAT gel dosimeters, using a novel ultrasound computed tomography system

    Modal analysis computer program package

    Get PDF
    Modal analysis computer program package for finding frequencies and mode shapes of any linear discrete system governed by generalized eigenvalue equatio

    New measurements of the cosmic infrared background fluctuations in deep Spitzer/IRAC survey data and their cosmological implications

    Get PDF
    We extend previous measurements of cosmic infrared background (CIB) fluctuations to ~ 1 deg using new data from the Spitzer Extended Deep Survey. Two fields, with depths of ~12 hr/pixel over 3 epochs, are analyzed at 3.6 and 4.5 mic. Maps of the fields were assembled using a self-calibration method uniquely suitable for probing faint diffuse backgrounds. Resolved sources were removed from the maps to a magnitude limit of AB mag ~ 25, as indicated by the level of the remaining shot noise. The maps were then Fourier-transformed and their power spectra were evaluated. Instrumental noise was estimated from the time-differenced data, and subtracting this isolates the spatial fluctuations of the actual sky. The power spectra of the source-subtracted fields remain identical (within the observational uncertainties) for the three epochs indicating that zodiacal light contributes negligibly to the fluctuations. Comparing to 8 mic power spectra shows that Galactic cirrus cannot account for the fluctuations. The signal appears isotropically distributed on the sky as required for an extragalactic origin. The CIB fluctuations continue to diverge to > 10 times those of known galaxy populations on angular scales out to < 1 deg. The low shot noise levels remaining in the diffuse maps indicate that the large scale fluctuations arise from the spatial clustering of faint sources well below the confusion noise. The spatial spectrum of these fluctuations is in reasonable agreement with an origin in populations clustered according to the standard cosmological model (LCDM) at epochs coinciding with the first stars era.Comment: ApJ, to be publishe
    • …
    corecore