780 research outputs found

    Odontogenic differentiation of human dental pulp stem cells on hydrogel scaffolds derived from decellularized bone extracellular matrix and collagen type I

    Get PDF
    Objectives: The aim of this study was to evaluate the level of odontogenic differentiation of dental pulp stem cells (DPSCs) on hydrogel scaffolds derived from bone extracellular matrix (bECM) in comparison to those seeded on collagen I (Col-I), one of the main components of dental pulp ECM. Methods: DPSCs isolated from human third molars were characterized for surface marker expression and odontogenic potential prior to seeding into bECM or Col-I hydrogel scaffolds. The cells were then seeded onto bECM and Col-I hydrogel scaffolds and cultured under basal conditions or with odontogenic and growth factor (GF) supplements. DPSCs cultivated on tissue culture polystyrene (TCPS) with and without supplements were used as controls. Gene expression of dentin sialophosphoprotein (DSPP), dentin matrix protein 1 (DMP-1) and matrix extracellular phosphoglycoprotein (MEPE) was evaluated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and mineral deposition was observed by Von Kossa staining. Results: When DPSCs were cultured on bECM hydrogels, the mRNA expression levels of DSPP, DMP-1 and MEPE genes were significantly upregulated with respect to those cultured on Col-I scaffolds or TCPS in the absence of extra odontogenic inducers. In addition, more mineral deposition was observed on bECM hydrogel scaffolds as demonstrated by Von Kossa staining. Moreover, DSPP, DMP-1 and MEPE mRNA expressions of DPSCs cultured on bECM hydrogels were further upregulated by the addition of GFs or osteo/odontogenic medium compared to Col-I treated cells in the same culture conditions. Significance: These results demonstrate the potential of the bECM hydrogel scaffolds to stimulate odontogenic differentiation of DPSCs

    Design of the new electromagnetic measurement system for RFX-mod upgrade

    Get PDF
    A major modification of the RFX-mod toroidal load assembly has been decided in order to improve passive MHD control and to minimize the braking torque on the plasma, thus extending the operational space in both RFP and Tokamak configurations. With the removal of the vacuum vessel, the support structure will be modified in order to obtain a new vacuum-tight chamber and the first wall tiles will be directly in front of the passive stabilizing shell inside of it, so increasing both the poloidal cross section and the plasma-shell proximity. This implies the design of a new vacuum fit electromagnetic measurement system. The new local probes will be installed in vacuum onto the copper shell, behind the graphite tiles, and shall operate up to a maximum temperature of 180\ub0C to allow for baking cycles for first wall conditioning. Because of the reduced room available, tri-axial pickup probes have been designed, with the additional advantage of allowing the minimization of alignment errors. The paper describes the detailed design of the new probe set, in particular highlighting advantages and effectiveness of different probe solutions. Preliminary tests carried out on local probe prototypes to characterize their electromagnetic behaviour are also reported

    The Emergency Surgery Frailty Index (EmSFI) in Elderly Patients with Acute Appendicitis: An External Validation of Prognostic Score

    Get PDF
    Background: Identification of reliable risk-stratification tools is critical for surgical decision making, particularly in frail and elderly. The aim of the study is to validate the Emergency Surgery Frailty Index (EmSFI), in over 65 years old patients operated on for acute appendicitis. Methods: An observational study was conducted enrolling elderly patients with diagnosis of acute appendicitis who underwent emergency appendicectomy or right colectomy, between 2016 and 2021. All patients were treated according to the last SIFIPAC/WSES/SICG/SIMEU guidelines. Results: Overall, 61 patients were analyzed. Complication rate was higher for patients in the second EmSFI risk Class. Moreover, ROC analyses identified 3 as the best cutoff value in predicting risk of adverse postoperative events. Complication rate was higher in oldest elderly patients—over 80 years—(42.9 vs 22.5%; p 0.05) and was mainly related to medical complications (42.9 vs 12.5%, p 0.007). However, intestinal obstruction, peri-appendicular abscess on preoperative CT, peritonitis and a longer duration of surgery are related with increased risk of complications in the group of patients under 80 years. Conclusion: The EmSFI score results a valid prognostic marker for frailty status, and it may support the surgeon in emergency setting for acute appendicitis. Patients aged 80 years or older have a higher risk of complications, independent from those factors which relate to increased morbidity in younger elderly patients. Age alone is not a reliable indicator of the real surgical risk, but it must encourage the adoption of multidisciplinary collaborative models of care for this group of patients. © 2023, The Author(s)

    Implant-Prosthetic rehabilitation in bilateral agenesis of maxillary lateral incisors with a mini split crest

    Get PDF
    The reported clinical case describes the surgical procedure of ridge augmentation by using a "split crest" technique with a partial thickness flap and a subsequent implant-prosthetic rehabilitation aimed at treating a bilateral agenesis of the upper lateral incisors. In such cases with vestibule-palatal and mesial-distal scarce bone thicknesses associated with the need of a proper functional and aesthetic rehabilitation, the split crest technique is particularly suitable. In the case we reported, because of the poor bone thicknesses, we performed a minimally invasive split crest which allowed a correct insertion of the fixtures. This technique allowed us to achieve an optimal functional and aesthetic rehabilitation; moreover, we obtained a good emergency profile, ensuring the vitality of the close teeth and ensuring a good primary stability and the following osseointegration of dental implants

    Molybdenum sputtering film characterization for high gradient accelerating structures

    Full text link
    Technological advancements are strongly required to fulfill the demands of new accelerator devices with the highest accelerating gradients and operation reliability for the future colliders. To this purpose an extensive R&D regarding molybdenum coatings on copper is in progress. In this contribution we describe chemical composition, deposition quality and resistivity properties of different molybdenum coatings obtained via sputtering. The deposited films are thick metallic disorder layers with different resistivity values above and below the molibdenum dioxide reference value. Chemical and electrical properties of these sputtered coatings have been characterized by Rutherford backscattering, XANES and photoemission spectroscopy. We will also present a three cells standing wave section coated by a molybdenum layer \sim 500 nm thick designed to improve the performance of X-Band accelerating systems.Comment: manuscript has been submitted and accepted by Chinese Physics C (2012

    Muscle acellular scaffold as a biomaterial: Effects on C2C12 cell differentiation and interaction with the murine host environment

    Get PDF
    The extracellular matrix (ECM) of decellularized organs possesses the characteristics of the ideal tissue-engineering scaffold (i.e., histocompatibility, porosity, degradability, non-toxicity). We previously observed that the muscle acellular scaffold (MAS) is a pro-myogenic environmentin vivo. In order to determine whether MAS, which is basically muscle ECM, behaves as a myogenic environment, regardless of its location, we analyzed MAS interaction with both muscle and non-muscle cells and tissues, to assess the effects of MAS on cell differentiation. Bone morphogenetic protein treatment of C2C12 cells cultured within MAS induced osteogenic differentiation in vitro, thus suggesting that MAS does not irreversibly commit cells to myogenesis.In vivo MAS supported formation of nascent muscle fibers when replacing a muscle (orthotopic position). However, heterotopically grafted MAS did not give rise to muscle fibers when transplanted within the renal capsule. Also, no muscle formation was observed when MAS was transplanted under the xiphoid process, in spite of the abundant presence of cells migrating along the laminin-based MAS structure. Taken together, our results suggest that MAS itself is not sufficient to induce myogenic differentiation. It is likely that the pro-myogenic environment of MAS is not strictly related to the intrinsic properties of the muscle scaffold (e.g., specific muscle ECM proteins). Indeed, it is more likely that myogenic stem cells colonizing MAS recognize a muscle environment that ultimately allows terminal myogenic differentiation. In conclusion, MAS may represent a suitable environment for muscle and non-muscle 3D constructs characterized by a highly organized structure whose relative stability promotes integration with the surrounding tissues. Our work highlights the plasticity of MAS, suggesting that it may be possible to consider MAS for a wider range of tissue engineering applications than the mere replacement of volumetric muscle loss
    corecore