9 research outputs found

    Identifying restoration opportunities beneath native mesquite canopies

    No full text
    Effective restoration strategies are needed to address habitat degradation that accompanies worldwide environmental change. One method used to enhance restoration outcomes is the leveraging of beneficial relationships (facilitation) among plants. In the southwestern United States, native mesquite trees (Prosopis spp.) are commonly planted to stabilize soil, but the value of using mesquite canopies for enhancing restoration success is unknown. We explored this possibility in an attempt to understand how common species, that both are and are not typically used for restoration, might differentially respond to mesquite canopies. We used a Bayesian multivariate generalized mixed model structure to analyze a dataset describing natural vegetation density in the Santa Rita Experimental Range, Arizona, United States. We found that more dominant species were not more likely to be distributed under mesquite. We also found that, while all of the focal species were more likely to be under mesquite with increased mesquite cover, they varied in the strength of their responses and the degree of saturation. Finally, we found that the aggressive invasive grass Eragrostis lehmanniana was found at lower incidences with increasing mesquite canopy cover, compared to the total species average as well as several of the natives investigated in this study. This work highlights the importance of being conscious of canopy size and continuity when considering understory species for restoration. This work also suggests that mesquite canopies can be used to provide a “safe site” for restoration species because competitive pressure from invasives is slightly reduced. © 2020 Society for Ecological Restoration12 month embargo; first published: 05 December 2020This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Cumulative nitrogen enrichment alters the drivers of grassland overyielding.

    Get PDF
    Effects of plant diversity on grassland productivity, or overyielding, are found to be robust to nutrient enrichment. However, the impact of cumulative nitrogen (N) addition (total N added over time) on overyielding and its drivers are underexplored. Synthesizing data from 15 multi-year grassland biodiversity experiments with N addition, we found that N addition decreases complementarity effects and increases selection effects proportionately, resulting in no overall change in overyielding regardless of N addition rate. However, we observed a convex relationship between overyielding and cumulative N addition, driven by a shift from complementarity to selection effects. This shift suggests diminishing positive interactions and an increasing contribution of a few dominant species with increasing N accumulation. Recognizing the importance of cumulative N addition is vital for understanding its impacts on grassland overyielding, contributing essential insights for biodiversity conservation and ecosystem resilience in the face of increasing N deposition

    Consistent stabilizing effects of plant diversity across spatial scales and climatic gradients

    No full text
    Biodiversity has widely been documented to enhance local community stability but whether such stabilizing effects of biodiversity extend to broader scales remains elusive. Here, we investigated the relationships between biodiversity and community stability in natural plant communities from quadrat (1 m 2) to plot (400 m 2) and regional (5-214 km 2) scales and across broad climatic conditions, using an extensive plant community dataset from the National Ecological Observatory Network. We found that plant diversity provided consistent stabilizing effects on total community abundance across three nested spatial scales and climatic gradients. The strength of the stabilizing effects of biodiversity increased modestly with spatial scale and decreased as precipitation seasonality increased. Our findings illustrate the generality of diversity-stability theory across scales and climatic gradients, which provides a robust framework for understanding ecosystem responses to biodiversity and climate changes

    Consistent stabilizing effects of plant diversity across spatial scales and climatic gradients

    No full text
    Biodiversity has widely been documented to enhance local community stability but whether such stabilizing effects of biodiversity extend to broader scales remains elusive. Here, we investigated the relationships between biodiversity and community stability in natural plant communities from quadrat (1 m 2) to plot (400 m 2) and regional (5-214 km 2) scales and across broad climatic conditions, using an extensive plant community dataset from the National Ecological Observatory Network. We found that plant diversity provided consistent stabilizing effects on total community abundance across three nested spatial scales and climatic gradients. The strength of the stabilizing effects of biodiversity increased modestly with spatial scale and decreased as precipitation seasonality increased. Our findings illustrate the generality of diversity-stability theory across scales and climatic gradients, which provides a robust framework for understanding ecosystem responses to biodiversity and climate changes

    Consistent stabilizing effects of plant diversity across spatial scales and climatic gradients

    No full text
    All data associated with the publications: Liang et al. (2022) Consistent stabilizing effects of plant diversity across spatial scales and climatic gradients"
    corecore