16 research outputs found

    Sex-dimorphism in Cardiac Nutrigenomics: effect of Trans fat and/or Monosodium Glutamate consumption

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A paucity of information on biological sex-specific differences in cardiac gene expression in response to diet has prompted this present nutrigenomics investigation.</p> <p>Sexual dimorphism exists in the physiological and transcriptional response to diet, particularly in response to high-fat feeding. Consumption of <it>Trans</it>-fatty acids (TFA) has been linked to substantially increased risk of heart disease, in which sexual dimorphism is apparent, with males suffering a higher disease rate. Impairment of the cardiovascular system has been noted in animals exposed to Monosodium Glutamate (MSG) during the neonatal period, and sexual dimorphism in the growth axis of MSG-treated animals has previously been noted. Processed foods may contain both TFA and MSG.</p> <p>Methods</p> <p>We examined physiological differences and changes in gene expression in response to TFA and/or MSG consumption compared to a control diet, in male and female C57BL/6J mice.</p> <p>Results</p> <p>Heart and % body weight increases were greater in TFA-fed mice, who also exhibited dyslipidemia (P < 0.05). Hearts from MSG-fed females weighed less than males (P < 0.05). 2-factor ANOVA indicated that the TFA diet induced over twice as many cardiac differentially expressed genes (DEGs) in males compared to females (P < 0.001); and 4 times as many male DEGs were downregulated including <it>Gata4</it>, <it>Mef2d </it>and <it>Srebf2</it>. Enrichment of functional Gene Ontology (GO) categories were related to transcription, phosphorylation and anatomic structure (P < 0.01). A number of genes were upregulated in males and downregulated in females, including pro-apoptotic histone deacetylase-2 (HDAC2). Sexual dimorphism was also observed in cardiac transcription from MSG-fed animals, with both sexes upregulating approximately 100 DEGs exhibiting sex-specific differences in GO categories. A comparison of cardiac gene expression between all diet combinations together identified a subset of 111 DEGs significant only in males, 64 DEGs significant in females only, and 74 transcripts identified as differentially expressed in response to dietary manipulation in both sexes.</p> <p>Conclusion</p> <p>Our model identified major changes in the cardiac transcriptional profile of TFA and/or MSG-fed mice compared to controls, which was reflected by significant differences in the physiological profile within the 4 diet groups. Identification of sexual dimorphism in cardiac transcription may provide the basis for sex-specific medicine in the future.</p

    Liraglutide and a lipidized analog of prolactin-releasing peptide show neuroprotective effects in a mouse model of β-amyloid pathology

    No full text
    Obesity and type 2 diabetes mellitus (T2DM) are important risk factors for Alzheimer's disease (AD). Drugs originally developed for T2DM treatment, e.g., analog of glucagon-like peptide 1 liraglutide, have shown neuroprotective effects in mouse models of AD. We previously examined the neuroprotective properties of palm11-PrRP31, an anorexigenic and glucose-lowering analog of prolactin-releasing peptide, in a mouse model of AD-like Tau pathology, THY-Tau22 mice. Here, we demonstrate the neuroprotective effects of palm11-PrRP31 in double transgenic APP/PS1 mice, a model of AD-like β-amyloid (Aβ) pathology. The 7-8-month-old APP/PS1 male mice were subcutaneously injected with liraglutide or palm11-PrRP31 for 2 months. Both the liraglutide and palm11-PrRP31 treatments reduced the Aβ plaque load in the hippocampus. Palm11-PrRP31 also significantly reduced hippocampal microgliosis, consistent with our observations of a reduced Aβ plaque load, and reduced cortical astrocytosis, similar to the treatment with liraglutide. Palm11-PrRP31 also tended to increase neurogenesis, as indicated by the number of doublecortin-positive cells in the hippocampus. After the treatment with both anorexigenic compounds, we observed a significant decrease in Tau phosphorylation at Thr231, one of the first epitopes phosphorylated in AD. This effect was probably caused by elevated activity of protein phosphatase 2A subunit C, the main Tau phosphatase. Both liraglutide and palm11-PrRP31 reduced the levels of caspase 3, which has multiple roles in the pathogenesis of AD. Palm11-PrRP31 increased protein levels of the pre-synaptic marker synaptophysin, suggesting that palm11-PrRP31 might help preserve synapses. These results indicate that palm11-PrRP31 has promising potential for the treatment of neurodegenerative diseases. © 2018 Elsevier Lt

    Changes in FGF21 Serum Concentrations and Liver mRNA Expression in an Experimental Model of Complete Lipodystrophy and Insulin-Resistant Diabetes

    No full text
    Summary Patients with obesity and type 2 diabetes often display high levels of the anti-diabetic factor fibroblast growth factor-21 (FGF21), suggesting that the overproduction of FGF21 may result from increased adiposity in an attempt by white adipose tissue (WAT) to counteract insulin resistance. However, the production of FGF21 diabetes in the absence of WAT has not been examined. In this study, we investigated the effects of lipodystrophy in A-ZIP F-1 mice on FGF21 production in relation to diabetes. A-ZIP F-1 mice displayed high FGF21 plasma levels resulting from enhanced FGF21 mRNA expression in the liver
    corecore