113 research outputs found

    Biological activities of fusarochromanone: a potent anti-cancer agent

    Get PDF
    Background Fusarochromanone (FC101) is a small molecule fungal metabolite with a host of interesting biological functions, including very potent anti-angiogenic and direct anti-cancer activity. Results Herein, we report that FC101 exhibits very potent in-vitro growth inhibitory effects (IC50 ranging from 10nM-2.5 μM) against HaCat (pre-malignant skin), P9-WT (malignant skin), MCF-7 (low malignant breast), MDA-231 (malignant breast), SV-HUC (premalignant bladder), UM-UC14 (malignant bladder), and PC3 (malignant prostate) in a time-course and dose-dependent manner, with the UM-UC14 cells being the most sensitive. FC101 induces apoptosis and an increase in proportion of cells in the sub-G1 phase in both HaCat and P9-WT cell lines as evidenced by cell cycle profile analysis. In a mouse xenograft SCC tumor model, FC101 was well tolerated, non-toxic, and achieved a 30% reduction in tumor size at a dose of 8 mg/kg/day. FC101 is also a potent anti-angiogenenic agent. At nanomolar doses, FC101 inhibits the vascular endothelial growth factor-A (VEGF-A)-mediated proliferation of endothelial cells. Conclusions Our data presented here indicates that FC101 is an excellent lead candidate for a small molecule anti-cancer agent that simultaneously affects angiogenesis signaling, cancer signal transduction, and apoptosis. Further understanding of the underlying FC101’s molecular mechanism may lead to the design of novel targeted and selective therapeutics, both of which are pursued targets in cancer drug discovery

    Synthesis and Characterization of Core-shell ZrO2/PAAEM/PS Nanoparticles

    Get PDF
    This work demonstrates the synthesis of core-shell ZrO2/PAAEM/PS nanoparticles through a combination of sol–gel method and emulsifier-free emulsion polymerizaiton. By this method, the modified nanometer ZrO2cores were prepared by chemical modification at a molecular level of zirconium propoxide with monomer of acetoacetoxyethylmethacrylate (AAEM), and then copolymerized with vinyl monomer to form uniform-size hybrid nanoparticles with diameter of around 250 nm. The morphology, composition, and thermal stability of the core-shell particles were characterized by various techniques including transmission electron microscopy (TEM), X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and thermal-gravimetry analyzer (TGA). The results indicate that the inorganic–organic nanocomposites exhibit good thermal stability with the maximum decomposition temperature of ~447 °C. This approach would be useful for the synthesis of other inorganic–organic nanocomposites with desired functionalities

    On asymptotically AdS-like solutions of three dimensional massive gravity

    Full text link
    In this paper we have added Maxwell, Maxwell-Chern-Simons and gravitational Chern-Simons terms to Born-Infeld extended new massive gravity and we have found different types of (non)extremal charged black holes. For each black hole we find mass, angular momentum, entropy and temperature. Since our solutions are asymptotically AdS or warped-AdS, we infer central charges of dual CFTs by using Cardy's formula. Computing conserved charges associated to asymptotic symmetry transformations confirms calculation of central charges. For CFTs dual to asymptotically AdS solutions we find left central charges from Cardy's formula, while conserved charge approach gives both left and right central charges. For CFTs dual to asymptotically warped-AdS solutions, left and right central charges are equal when we have Maxwell-Chern-Simons term but they have different values when gravitational Chern-Simons term is included.Comment: 30 pages, 11 tables. Improved version (two new sections added for asymptotic conserved charges). Accepted in JHE

    Diagnostic accuracy of a clinical diagnosis of idiopathic pulmonary fibrosis: An international case-cohort study

    Get PDF
    We conducted an international study of idiopathic pulmonary fibrosis (IPF) diagnosis among a large group of physicians and compared their diagnostic performance to a panel of IPF experts. A total of 1141 respiratory physicians and 34 IPF experts participated. Participants evaluated 60 cases of interstitial lung disease (ILD) without interdisciplinary consultation. Diagnostic agreement was measured using the weighted kappa coefficient (\u3baw). Prognostic discrimination between IPF and other ILDs was used to validate diagnostic accuracy for first-choice diagnoses of IPF and were compared using the Cindex. A total of 404 physicians completed the study. Agreement for IPF diagnosis was higher among expert physicians (\u3baw=0.65, IQR 0.53-0.72, p20 years of experience (C-index=0.72, IQR 0.0-0.73, p=0.229) and non-university hospital physicians with more than 20 years of experience, attending weekly MDT meetings (C-index=0.72, IQR 0.70-0.72, p=0.052), did not differ significantly (p=0.229 and p=0.052 respectively) from the expert panel (C-index=0.74 IQR 0.72-0.75). Experienced respiratory physicians at university-based institutions diagnose IPF with similar prognostic accuracy to IPF experts. Regular MDT meeting attendance improves the prognostic accuracy of experienced non-university practitioners to levels achieved by IPF experts

    Cutaneous wound healing: recruiting developmental pathways for regeneration

    Full text link

    <b>Characterization of nanocrystalline silicon germanium film and nanotube in adsorption gas by Monte Carlo and Langevin dynamic simulation</b>

    Get PDF
    The nanocrystalline silicon-germanium films (Si/Ge) and Si/Ge nanotubes have low band gaps and high carrier mobility, thus offering appealing potential for absorbing gas molecules. Interaction between hydrogen molecules and bare as well as functionalized Si/Ge nanofilm and nanotube was investigated using Monte Carlo (MC) and Langevin dynamic (LD) simulation methods. It was found that the binding energy of the H<sub>2</sub> on the Si/Ge surface is weak, and be enhanced by increasing curvature of surface to tube form and increasing temperature. The structural, total energy and energy band gaps of H<sub>2</sub> absorbed nanocrystalline silicon germanium film (Si/Ge) and as it passes through Si/Ge nanotube was also studied. They are computed with MC and LD simulation the methods at different temperatures. All the calculations were carried out using HyperChem 7.0 program package
    • …
    corecore