142 research outputs found

    Application of new dynamical spectra of orbits in Hamiltonian systems

    Full text link
    In the present article, we investigate the properties of motion in Hamiltonian systems of two and three degrees of freedom, using the distribution of the values of two new dynamical parameters. The distribution functions of the new parameters, define the S(g) and the S(w) dynamical spectra. The first spectrum definition, that is the S(g) spectrum, will be applied in a Hamiltonian system of two degrees of freedom (2D), while the S(w) dynamical spectrum will be deployed in a Hamiltonian system of three degrees of freedom (3D). Both Hamiltonian systems, describe a very interesting dynamical system which displays a large variety of resonant orbits, different chaotic components and also several sticky regions. We test and prove the efficiency and the reliability of these new dynamical spectra, in detecting tiny ordered domains embedded in the chaotic sea, corresponding to complicated resonant orbits of higher multiplicity. The results of our extensive numerical calculations, suggest that both dynamical spectra are fast and reliable discriminants between different types of orbits in Hamiltonian systems, while requiring very short computation time in order to provide solid and conclusive evidence regarding the nature of an orbit. Furthermore, we establish numerical criteria in order to quantify the results obtained from our new dynamical spectra. A comparison to other previously used dynamical indicators, reveals the leading role of the new spectra.Comment: Published in Nonlinear Dynamics (NODY) journal. arXiv admin note: text overlap with arXiv:1009.1993 by other author

    Stable Real-Time Interaction Between Virtual Humans and Real Scenes

    Get PDF
    We present an augmented reality system that relies on purely passive techniques to solve the real-time registration problem. It can run on a portable PC and does not require engineering of the environment, for example by adding markers. To achieve this result, we have integrated robust computer vision techniques into a powerful VR framework. The resulting AR system allows us to produce complex rendering and animation of virtual human characters, and to blend them into the real world. The system tracks the 3D camera position by means of a natural features tracker, which, given a rough CAD model, can deal with complex 3D objects. The tracking method can handle both large camera displacements and aspect changes. We will show that our system works in the cluttered environment of a real industrial facility and can, therefore, be used to enhance manufacturing and industrial processe

    Simulating virtual humans in networked virtual environments

    Get PDF
    In the past decade, networked virtual environments (NVEs) have been an increasingly active area of research, with the first commercial systems emerging recently. Graphical and behavioral representation of users within such systems is a particularly important issue that has lagged in development behind other issues such as network architectures and space structuring. We expose the importance of using virtual humans within these systems and provide a brief overview of several virtual human technologies used in particular for simulation of crowds. As the main technical contribution, the paper presents the integration of these technologies with the COVEN-DIVE platform, the extension of the DIVE system developed within the COVEN project. In conjunction with this, we present our contributions through the COVEN project to the MPEG-4 standard concerning the representation of virtual human

    Dynamics of Barred Galaxies

    Get PDF
    Some 30% of disc galaxies have a pronounced central bar feature in the disc plane and many more have weaker features of a similar kind. Kinematic data indicate that the bar constitutes a major non-axisymmetric component of the mass distribution and that the bar pattern tumbles rapidly about the axis normal to the disc plane. The observed motions are consistent with material within the bar streaming along highly elongated orbits aligned with the rotating major axis. A barred galaxy may also contain a spheroidal bulge at its centre, spirals in the outer disc and, less commonly, other features such as a ring or lens. Mild asymmetries in both the light and kinematics are quite common. We review the main problems presented by these complicated dynamical systems and summarize the effort so far made towards their solution, emphasizing results which appear secure. (Truncated)Comment: This old review appeared in 1993. Plain tex with macro file. 82 pages 18 figures. A pdf version with figures at full resolution (3.24MB) is available at http://www.physics.rutgers.edu/~sellwood/bar_review.pd

    Virtual Reflexes

    Full text link
    Virtual Reality is used successfully to treat people for regular phobias. A new challenge is to develop Virtual Reality Exposure Training for social skills. Virtual actors in such systems have to show appropriate social behavior including emotions, gaze, and keeping distance. The behavior must be realistic and real-time. Current approaches consist of four steps: 1) trainee social signal detection, 2) cognitive-affective interpretation, 3) determination of the appropriate bodily responses, and 4) actuation. The "cognitive" detour of such approaches does not match the directness of human bodily reflexes and causes unrealistic responses and delay. Instead, we propose virtual reflexes as concurrent sensory-motor processes to control virtual actors. Here we present a virtual reflexes architecture, explain how emotion and cognitive modulation are embedded, detail its workings, and give an example description of an aggression training application

    Silencing of germline-expressed genes by DNA elimination in somatic cells

    Get PDF
    SummaryChromatin diminution is the programmed elimination of specific DNA sequences during development. It occurs in diverse species, but the function(s) of diminution and the specificity of sequence loss remain largely unknown. Diminution in the nematode Ascaris suum occurs during early embryonic cleavages and leads to the loss of germline genome sequences and the formation of a distinct genome in somatic cells. We found that ∌43 Mb (∌13%) of genome sequence is eliminated in A. suum somatic cells, including ∌12.7 Mb of unique sequence. The eliminated sequences and location of the DNA breaks are the same in all somatic lineages from a single individual and between different individuals. At least 685 genes are eliminated. These genes are preferentially expressed in the germline and during early embryogenesis. We propose that diminution is a mechanism of germline gene regulation that specifically removes a large number of genes involved in gametogenesis and early embryogenesis
    • 

    corecore