322 research outputs found

    Gating Mechanism of BK (Slo1) Channels: So Near, Yet So Far

    Get PDF

    Single-channel kinetics of BK (Slo1) channels

    Get PDF
    Single-channel kinetics has proven a powerful tool to reveal information about the gating mechanisms that control the opening and closing of ion channels. This introductory review focuses on the gating of large conductance Ca2+- and voltage-activated K+ (BK or Slo1) channels at the single-channel level. It starts with single-channel current records and progresses to presentation and analysis of single-channel data and the development of gating mechanisms in terms of discrete state Markov (DSM) models). The DSM models are formulated in terms of the tetrameric modular structure of BK channels, consisting of a central transmembrane pore-gate domain (PGD) attached to four surrounding transmembrane voltage sensing domains (VSD) and a large intracellular cytosolic domain (CTD), also referred to as the gating ring. The modular structure and data analysis shows that the Ca2+ and voltage dependent gating considered separately can each be approximated by 10-state two-tiered models with 5 closed states on the upper tier and 5 open states on the lower tier. The modular structure and joint Ca2+ and voltage dependent gating are consistent with a 50 state two-tiered model with 25 closed states on the upper tier and 25 open states on the lower tier. Adding an additional tier of brief closed (flicker states) to the 10-state or 50-state models improved the description of the gating. For fixed experimental conditions a channel would gate in only a subset of the potential number of states. The detected number of states and the correlations between adjacent interval durations are consistent with the tiered models. The examined models can account for the single-channel kinetics and the bursting behavior of gating. Ca2+ and voltage activate BK channels by predominantly increasing the effective opening rate of the channel with a smaller decrease in the effective closing rate. Ca2+ and depolarization thus activate by mainly destabilizing the closed states

    Linking Exponential Components to Kinetic States in Markov Models for Single-Channel Gating

    Get PDF
    Discrete state Markov models have proven useful for describing the gating of single ion channels. Such models predict that the dwell-time distributions of open and closed interval durations are described by mixtures of exponential components, with the number of exponential components equal to the number of states in the kinetic gating mechanism. Although the exponential components are readily calculated (Colquhoun and Hawkes, 1982, Phil. Trans. R. Soc. Lond. B. 300:1–59), there is little practical understanding of the relationship between components and states, as every rate constant in the gating mechanism contributes to each exponential component. We now resolve this problem for simple models. As a tutorial we first illustrate how the dwell-time distribution of all closed intervals arises from the sum of constituent distributions, each arising from a specific gating sequence. The contribution of constituent distributions to the exponential components is then determined, giving the relationship between components and states. Finally, the relationship between components and states is quantified by defining and calculating the linkage of components to states. The relationship between components and states is found to be both intuitive and paradoxical, depending on the ratios of the state lifetimes. Nevertheless, both the intuitive and paradoxical observations can be described within a consistent framework. The approach used here allows the exponential components to be interpreted in terms of underlying states for all possible values of the rate constants, something not previously possible

    Probing the Geometry of the Inner Vestibule of BK Channels with Sugars

    Get PDF
    The geometry of the inner vestibule of BK channels was probed by examining the effects of different sugars in the intracellular solution on single-channel current amplitude (unitary current). Glycerol, glucose, and sucrose decreased unitary current through BK channels in a concentration- and size-dependent manner, in the order sucrose > glucose > glycerol, with outward currents being reduced more than inward currents. The fractional decrease of outward current was more directly related to the fractional hydrodynamic volume occupied by the sugars than to changes in osmolality. For concentrations of sugars ≤1 M, the i/V plots for outward currents in the presence and absence of sugar superimposed after scaling, and increasing K+i from 150 mM to 2 M increased the magnitudes of the i/V plots with little effect on the shape of the scaled curves. These observations suggest that sugars ≤1 M reduce outward currents mainly by entering the inner vestibule and reducing the movement of K+ through the vestibule, rather than by limiting diffusion-controlled access of K+ to the vestibule. With 2 M sucrose, the movement of K+ into the inner vestibule became diffusion limited for 150 mM K+i and voltages >+100 mV. Increasing K+i then relieved the diffusion limitation. An estimate of the capture radius based on the 5 pA diffusion-limited current for channels without the ring of negative charge at the entrance to the inner vestibule was 2.2 Å. Adding the radius of a hydrated K+ (6–8 Å) then gave an effective radius for the entrance to the inner vestibule of 8–10 Å. Such a functionally wide entrance to the inner vestibule together with our observation that even small concentrations of sugar in the inner vestibule reduce unitary current suggest that a wide inner vestibule is required for the large conductance of BK channels

    Functional Coupling of the β1 Subunit to the Large Conductance Ca2+-Activated K+ Channel in the Absence of Ca2+: Increased Ca2+ Sensitivity from a Ca2+-Independent Mechanism

    Get PDF
    Coexpression of the β1 subunit with the α subunit (mSlo) of BK channels increases the apparent Ca2+ sensitivity of the channel. This study investigates whether the mechanism underlying the increased Ca2+ sensitivity requires Ca2+, by comparing the gating in 0 Ca2+i of BK channels composed of α subunits to those composed of α+β1 subunits. The β1 subunit increased burst duration ∼20-fold and the duration of gaps between bursts ∼3-fold, giving an ∼10-fold increase in open probability (Po) in 0 Ca2+i. The effect of the β1 subunit on increasing burst duration was little changed over a wide range of Po achieved by varying either Ca2+i or depolarization. The effect of the β1 subunit on increasing the durations of the gaps between bursts in 0 Ca2+i was preserved over a range of voltage, but was switched off as Ca2+i was increased into the activation range. The Ca2+-independent, β1 subunit-induced increase in burst duration accounted for 80% of the leftward shift in the Po vs. Ca2+i curve that reflects the increased Ca2+ sensitivity induced by the β1 subunit. The Ca2+-dependent effect of the β1 subunit on the gaps between bursts accounted for the remaining 20% of the leftward shift. Our observation that the major effects of the β1 subunit are independent of Ca2+i suggests that the β1 subunit mainly alters the energy barriers of Ca2+-independent transitions. The changes in gating induced by the β1 subunit differ from those induced by depolarization, as increasing Po by depolarization or by the β1 subunit gave different gating kinetics. The complex gating kinetics for both α and α+β1 channels in 0 Ca2+i arise from transitions among two to three open and three to five closed states and are inconsistent with Monod-Wyman-Changeux type models, which predict gating among only one open and one closed state in 0 Ca2+i

    USDA Research On Impacts of Predation

    Get PDF
    This research by the U.S. Department of Agriculture, Economic Research Service, was done at the direct request of Congress, and with special funding in fiscal years 1974 and 1975. Basic questions guiding the research were: 1. How sizable are predation losses? How many producers are effected? 2. What effect has predation had on the decline of the sheep industry? 3. What are benefits and cost of predator control programs

    Intra- and Intersubunit Cooperativity in Activation of BK Channels by Ca2+

    Get PDF
    The activation of BK channels by Ca2+ is highly cooperative, with small changes in intracellular Ca2+ concentration having large effects on open probability (Po). Here we examine the mechanism of cooperative activation of BK channels by Ca2+. Each of the four subunits of BK channels has a large intracellular COOH terminus with two different high-affinity Ca2+ sensors: an RCK1 sensor (D362/D367) located on the RCK1 (regulator of conductance of K+) domain and a Ca-bowl sensor located on or after the RCK2 domain. To determine interactions among these Ca2+ sensors, we examine channels with eight different configurations of functional high-affinity Ca2+ sensors on the four subunits. We find that the RCK1 sensor and Ca bowl contribute about equally to Ca2+ activation of the channel when there is only one high-affinity Ca2+ sensor per subunit. We also find that an RCK1 sensor and a Ca bowl on the same subunit are much more effective in increasing Po than when they are on different subunits, indicating positive intrasubunit cooperativity. If it is assumed that BK channels have a gating ring similar to MthK channels with alternating RCK1 and RCK2 domains and that the Ca2+ sensors act at the flexible (rather than fixed) interfaces between RCK domains, then a comparison of the distribution of Ca2+ sensors with the observed responses suggest that the interface between RCK1 and RCK2 domains on the same subunit is flexible. On this basis, intrasubunit cooperativity arises because two high-affinity Ca2+ sensors acting across a flexible interface are more effective in opening the channel than when acting at separate interfaces. An allosteric model incorporating intrasubunit cooperativity nested within intersubunit cooperativity could approximate the Po vs. Ca2+ response for eight possible subunit configurations of the high-affinity Ca2+ sensors as well as for three additional configurations from a previous study

    Low resistance, large dimension entrance to the inner cavity of BK channels determined by changing side-chain volume

    Get PDF
    Large-conductance Ca2+- and voltage-activated K+ (BK) channels have the largest conductance (250–300 pS) of all K+-selective channels. Yet, the contributions of the various parts of the ion conduction pathway to the conductance are not known. Here, we examine the contribution of the entrance to the inner cavity to the large conductance. Residues at E321/E324 on each of the four α subunits encircle the entrance to the inner cavity. To determine if 321/324 is accessible from the inner conduction pathway, we measured single-channel current amplitudes before and after exposure and wash of thiol reagents to the intracellular side of E321C and E324C channels. MPA− increased currents and MTSET+ decreased currents, with no difference between positions 321 and 324, indicating that side chains at 321/324 are accessible from the inner conduction pathway and have equivalent effects on conductance. For neutral amino acids, decreasing the size of the entrance to the inner cavity by substituting large side-chain amino acids at 321/324 decreased outward single-channel conductance, whereas increasing the size of the entrance with smaller side-chain substitutions had little effect. Reductions in outward conductance were negated by high [K+]i. Substitutions had little effect on inward conductance. Fitting plots of conductance versus side-chain volume with a model consisting of one variable and one fixed resistor in series indicated an effective diameter and length of the entrance to the inner cavity for wild-type channels of 17.7 and 5.6 Å, respectively, with the resistance of the entrance ∼7% of the total resistance of the conduction pathway. The estimated dimensions are consistent with the structure of MthK, an archaeal homologue to BK channels. Our observations suggest that BK channels have a low resistance, large entrance to the inner cavity, with the entrance being as large as necessary to not limit current, but not much larger
    corecore