2,162 research outputs found

    Friedmann limits of rotating hypersurface-homogeneous dust models

    Full text link
    The existence of Friedmann limits is systematically investigated for all the hypersurface-homogeneous rotating dust models, presented in previous papers by this author. Limiting transitions that involve a change of the Bianchi type are included. Except for stationary models that obviously do not allow it, the Friedmann limit expected for a given Bianchi type exists in all cases. Each of the 3 Friedmann models has parents in the rotating class; the k = +1 model has just one parent class, the other two each have several parent classes. The type IX class is the one investigated in 1951 by Goedel. For each model, the consecutive limits of zero rotation, zero tilt, zero shear and spatial isotropy are explicitly calculated.Comment: 39 pages, LaTeX, 1 postscript figure. Subjects: General relativity, exact solutions, cosmolog

    Combustion in a Gas Stream: Studies in Flame Spreading and Flame Stability

    Get PDF
    Abstract Not Provided

    Blind protein structure prediction using accelerated free-energy simulations.

    Get PDF
    We report a key proof of principle of a new acceleration method [Modeling Employing Limited Data (MELD)] for predicting protein structures by molecular dynamics simulation. It shows that such Boltzmann-satisfying techniques are now sufficiently fast and accurate to predict native protein structures in a limited test within the Critical Assessment of Structure Prediction (CASP) community-wide blind competition

    Patient safety and estimation of renal function in patients prescribed new oral anticoagulants for stroke prevention in atrial fibrillation

    Get PDF
    OBJECTIVE: In clinical trials of dabigatran and rivaroxaban for stroke prevention in atrial fibrillation (AF), drug eligibility and dosing were determined using the Cockcroft-Gault equation to estimate creatine clearance as a measure of renal function. This cross-sectional study aimed to compare whether using estimated glomerular filtration rate (eGFR) by the widely available and widely used Modified Diet in Renal Disease (MDRD) equation would alter prescribing or dosing of the renally excreted new oral anticoagulants. PARTICIPANTS: Of 4712 patients with known AF within a general practitioner-registered population of 930 079 in east London, data were available enabling renal function to be calculated by both Cockcroft-Gault and MDRD methods in 4120 (87.4%). RESULTS: Of 4120 patients, 2706 were <80 years and 1414 were ≥80 years of age. Among those ≥80 years, 14.9% were ineligible for dabigatran according to Cockcroft-Gault equation but would have been judged eligible applying MDRD method. For those <80 years, 0.8% would have been incorrectly judged eligible for dabigatran and 5.3% would have received too high a dose. For rivaroxaban, 0.3% would have been incorrectly judged eligible for treatment and 13.5% would have received too high a dose. CONCLUSIONS: Were the MDRD-derived eGFR to be used instead of Cockcroft-Gault in prescribing these new agents, many elderly patients with AF would either incorrectly become eligible for them or would receive too high a dose. Safety has not been established using the MDRD equation, a concern since the risk of major bleeding would be increased in patients with unsuspected renal impairment. Given the potentially widespread use of these agents, particularly in primary care, regulatory authorities and drug companies should alert UK doctors of the need to use the Cockcroft-Gault formula to calculate eligibility for and dosing of the new oral anticoagulants in elderly patients with AF and not rely on the MDRD-derived eGFR

    Equivalence of three-dimensional spacetimes

    Full text link
    A solution to the equivalence problem in three-dimensional gravity is given and a practically useful method to obtain a coordinate invariant description of local geometry is presented. The method is a nontrivial adaptation of Karlhede invariant classification of spacetimes of general relativity. The local geometry is completely determined by the curvature tensor and a finite number of its covariant derivatives in a frame where the components of the metric are constants. The results are presented in the framework of real two-component spinors in three-dimensional spacetimes, where the algebraic classifications of the Ricci and Cotton-York spinors are given and their isotropy groups and canonical forms are determined. As an application we discuss Goedel-type spacetimes in three-dimensional General Relativity. The conditions for local space and time homogeneity are derived and the equivalence of three-dimensional Goedel-type spacetimes is studied and the results are compared with previous works on four-dimensional Goedel-type spacetimes.Comment: 13 pages - content changes and corrected typo

    Looking back and moving forward

    Get PDF
    This chapter brings together the research on teacher resilience and approaches to supporting resilience and wellbeing discussed in this volume. As many of the approaches utilised aspects of the BRiTE and Staying BRiTE projects, I highlight common themes as well as the different ways the authors developed and implemented their work to reflect their specific contexts and participants. I also reflect on broader issues related to conceptualisation of resilience, consider where responsibility for resilience lies, and explore future directions. The chapter also provides some insights regarding the collegial collaboration that has made the body of work possible

    Self-similar cosmologies in 5D: spatially flat anisotropic models

    Full text link
    In the context of theories of Kaluza-Klein type, with a large extra dimension, we study self-similar cosmological models in 5D that are homogeneous, anisotropic and spatially flat. The "ladder" to go between the physics in 5D and 4D is provided by Campbell-Maagard's embedding theorems. We show that the 5-dimensional field equations RAB=0R_{AB} = 0 determine the form of the similarity variable. There are three different possibilities: homothetic, conformal and "wave-like" solutions in 5D. We derive the most general homothetic and conformal solutions to the 5D field equations. They require the extra dimension to be spacelike, and are given in terms of one arbitrary function of the similarity variable and three parameters. The Riemann tensor in 5D is not zero, except in the isotropic limit, which corresponds to the case where the parameters are equal to each other. The solutions can be used as 5D embeddings for a great variety of 4D homogeneous cosmological models, with and without matter, including the Kasner universe. Since the extra dimension is spacelike, the 5D solutions are invariant under the exchange of spatial coordinates. Therefore they also embed a family of spatially {\it inhomogeneous} models in 4D. We show that these models can be interpreted as vacuum solutions in braneworld theory. Our work (I) generalizes the 5D embeddings used for the FLRW models; (II) shows that anisotropic cosmologies are, in general, curved in 5D, in contrast with FLRW models which can always be embedded in a 5D Riemann-flat (Minkowski) manifold; (III) reveals that anisotropic cosmologies can be curved and devoid of matter, both in 5D and 4D, even when the metric in 5D explicitly depends on the extra coordinate, which is quite different from the isotropic case.Comment: Typos corrected. Minor editorial changes and additions in the Introduction and Summary section
    • …
    corecore