5,921 research outputs found
Detecting Dual Superconductivity in the Ground State of Gauge Theory
We explicitly construct a monopole creation operator: its vacuum expectation
value is an order parameter for dual superconductivity, in that, if different
from zero, it signals a spontaneous breaking of the  symmetry
corresponding to monopole charge conservation. This operator is tested by
numerical simulations in compact  gauge theory. Our construction provides
a general recipe for detection of the condensation of any topological soliton.
In particular our operator can be used to detect dual superconductivity of the
QCD vacuum.Comment: 10 pages, 3 figures avalaible on request. REVTE
A point mutation in the splice donor site of intron 7 in the as2-casein encoding gene of the Mediterranean River buffalo results in an allele-specific exon skipping
The CSN1S2 cDNA of 10 unrelated Mediterranean
River Buffaloes reared in Southern Italy was amplified
by RT-PCR, while the region from the 6th to the 8th exon
of the CSN1S2 gene was amplified from genomic template.
cDNA sequence comparisons showed
that five individuals had a normal transcript only (named CSN1S2A), one had a
deleted transcript only (named CSN1S2B), because of the splicing out of the 27-bp of
exon 7, and the remaining four had a heterozygous pattern.
Analysis of the genomic sequences revealed a FM865620:
g.773G>C transversion that caused inactivation of the intron 7
splice donor site and, consequently, the allele-specific exon skipping
characteristic of the CSN1S2B allele. The g.773G>C
mutation creates a new AluI restriction site enabling a PCR–
RFLP rapid genotyping assay. The cDNA sequences showed three additional
exonic mutations forming an extended haplotype with
the g.773G>C polymorphism: FM865618: c.459C>T,
c.484A>T and c.568A>G homozygous and heterozygous
respectively in the CSN1S2BB and CSN1S2AB buffaloes. The
first is silent, while the remaining two are non-conservative
(p.Ile162Phe and p.Thp200Ala respectively). The genotype frequencies (37 CSN1S2A/A,
15 CSN1S2A/B and one CSN1S2B/B) are in agreement with
Hardy–Weinberg equilibrium, with the
frequency of the deleted B allele being 0.16.
The predicted bubaline as2B protein
is 198 aa long instead of 207 aa and would also be characterized
by the presence of Phe at position 147 and Ala at 185
Resistance to Ralstonia Solanacearum of sexual hybrids between Solanum commersonii and S. tuberosum
This research was carried out to study the levels of bacterial wilt resistance and genetic diversity of (near) pentaploid sexual hybrids between S. commersonii (2n = 2x = 24, 1EBN) and cultivated S. tuberosum. Following artificial inoculations with Ralstonia solanacearum, wilting degree was estimated on a scale from 0 to 4, and seven genotypes of 26 (27%) displaying a S. commersonii like behavior were identified. Latent bacterial colonizations were detected in roots of symptomless S. commersonii and hybrids, whereas no bacterial populations were detected within stems. This suggests that the movement and/or growth of the bacterium in the aerial part were strongly inhibited. A molecular study with AFLP markers clustered hybrids into nine groups and provided evidence that resistant hybrids were slightly more similar to cultivated S. tuberosum than to the wild parent. This is important in view of the re-establishment of the cultivated genetic background through backcrosses. Hybrids displayed good fertility and are being used for further breeding efforts
Testosterone insulin-like effects: an in vitro study on the short-term metabolic effects of testosterone in human skeletal muscle cells
Testosterone by promoting different metabolic pathways contributes to short-term homeostasis of skeletal muscle, the largest insulin-sensitive tissue and the primary site for insulin-stimulated glucose utilization. Despite evidences indicate a close relationship between testosterone and glucose metabolism, the molecular mechanisms responsible for a possible testosterone-mediated insulin-like effects on skeletal muscle are still unknown
High density QCD on a Lefschetz thimble?
It is sometimes speculated that the sign problem that afflicts many quantum
field theories might be reduced or even eliminated by choosing an alternative
domain of integration within a complexified extension of the path integral (in
the spirit of the stationary phase integration method). In this paper we start
to explore this possibility somewhat systematically. A first inspection reveals
the presence of many difficulties but - quite surprisingly - most of them have
an interesting solution. In particular, it is possible to regularize the
lattice theory on a Lefschetz thimble, where the imaginary part of the action
is constant and disappears from all observables. This regularization can be
justified in terms of symmetries and perturbation theory. Moreover, it is
possible to design a Monte Carlo algorithm that samples the configurations in
the thimble. This is done by simulating, effectively, a five dimensional
system. We describe the algorithm in detail and analyze its expected cost and
stability. Unfortunately, the measure term also produces a phase which is not
constant and it is currently very expensive to compute. This residual sign
problem is expected to be much milder, as the dominant part of the integral is
not affected, but we have still no convincing evidence of this. However, the
main goal of this paper is to introduce a new approach to the sign problem,
that seems to offer much room for improvements. An appealing feature of this
approach is its generality. It is illustrated first in the simple case of a
scalar field theory with chemical potential, and then extended to the more
challenging case of QCD at finite baryonic density.Comment: Misleading footnote 1 corrected: locality deserves better
  investigations. Formula (31) corrected (we thank Giovanni Eruzzi for this
  observation). Note different title in journal versio
Optical issues for the diagnostic stations for the ELI-NP compton gamma source
A high brightness electron Linac is being built in the Compton Gamma Source at the ELI Nuclear Physics facility in Romania. To achieve the design luminosity, a train of 32 bunches, 16 ns spaced, with a nominal charge of 250 pC will collide with the laser beam in the interaction point. Electron beam spot size is measured with optical transition radiation (OTR) profile monitors. In order to measure the beam properties, the optical radiation detecting system must have the necessary accuracy and resolution. This paper deals with the studies of different optic configurations to achieve the magnification, resolution and accuracy in order to measure very small beam (below 30 μm) or to study the angular distribution of the OTR and therefore the energy of the beam. Several configurations of the optical detection line will be studied both with simulation tools (e.g. Zemax) and experimentally. The paper will deal also with the sensibility of optic system (in terms of depth of field, magnification and resolution) to systematic error
Endothelial cells, endoplasmic reticulum stress and oxysterols
Oxysterols are bioactive lipids that act as regulators of lipid metabolism, inflammation, cell viability and are involved in several diseases, including atherosclerosis. Mounting evidence linked the atherosclerosis to endothelium dysfunction; in fact, the endothelium regulates the vascular system with roles in processes such as hemostasis, cell cholesterol, hormone trafficking, signal transduction and inflammation. Several papers shed light the ability of oxysterols to induce apoptosis in different cell lines including endothelial cells. Apoptotic endothelial cell and endothelial denudation may constitute a critical step in the transition to plaque erosion and vessel thrombosis, so preventing the endothelial damaged has garnered considerable attention as a novel means of treating atherosclerosis. Endoplasmic reticulum (ER) is the site where the proteins are synthetized and folded and is necessary for most cellular activity; perturbations of ER homeostasis leads to a condition known as endoplasmic reticulum stress. This condition evokes the unfolded protein response (UPR) an adaptive pathway that aims to restore ER homeostasis. Mounting evidence suggests that chronic activation of UPR leads to cell dysfunction and death and recently has been implicated in pathogenesis of endothelial dysfunction. Autophagy is an essential catabolic mechanism that delivers misfolded proteins and damaged organelles to the lysosome for degradation, maintaining basal levels of autophagic activity it is critical for cell survival. Several evidence suggests that persistent ER stress often results in stimulation of autophagic activities, likely as a compensatory mechanism to relieve ER stress and consequently cell death. In this review, we summarize evidence for the effect of oxysterols on endothelial cells, especially focusing on oxysterols-mediated induction of endoplasmic reticulum stress
The phosphodiesterase 5 inhibitor sildenafil decreases the proinflammatory chemokine IL-8 in diabetic cardiomyopathy: in vivo and in vitro evidence
Purpose: Interleukin (IL)-8 is a proinflammatory C-X-C chemokine involved in inflammation underling cardiac diseases, primary or in comorbid condition, such diabetic cardiomyopathy (DCM). The phosphodiesterase type 5 inhibitor sildenafil can ameliorate cardiac conditions by counteracting inflammation. The study aim is to evaluate the effect of sildenafil on serum IL-8 in DCM subjects vs. placebo, and on IL-8 release in human endothelial cells (Hfaec) and peripheral blood mononuclear cells (PBMC) under inflammatory stimuli. Methods: IL-8 was quantified: in sera of (30) DCM subjects before (baseline) and after sildenafil (100 mg/day, 3-months) vs. (16) placebo and (15) healthy subjects, by multiplatform array; in supernatants from inflammation-challenged cells after sildenafil (1 µM), by ELISA. Results: Baseline IL-8 was higher in DCM vs. healthy subjects (149.14 ± 46.89 vs. 16.17 ± 5.38 pg/ml, p < 0.01). Sildenafil, not placebo, significantly reduced serum IL-8 (23.7 ± 5.9 pg/ml, p < 0.05 vs. baseline). Receiver operating characteristic (ROC) curve for IL-8 was 0.945 (95% confidence interval of 0.772 to 1.0, p < 0.01), showing good capacity of discriminating the response in terms of drug-induced IL-8 decrease (sensitivity of 0.93, specificity of 0.90). Sildenafil significantly decreased IL-8 protein release by inflammation-induced Hfaec and PBMC and downregulated IL-8 mRNA in PBMC, without affecting cell number or PDE5 expression. Conclusion: Sildenafil might be suggested as potential novel pharmacological tool to control DCM progression through IL-8 targeting at systemic and cellular level
Physical activity and hypocaloric diet recovers osteoblasts homeostasis in women affected by abdominal obesity.
Obesity is a multifactorial disease linked to metabolic chronic disorders such as diabetes, and hypertension. Also, it has recently been associated with skeletal alterations and low bone mineral density. We previously demonstrated that exposure of osteoblasts to sera of sedentary subjects affected by obesity alters cell homeostasis in vitro, leading to disruption of intracellular differentiation pathways and cellular activity. Thus, the purpose of the present study has been to evaluate whether sera of sedentary obese women, subjected to physical activity and hypocaloric diet, could recover osteoblast homeostasis in vitro as compared to the sera of same patients before intervention protocol. To this aim, obese women were evaluated at time 0 and after 4, 6, and 12 months of individualized prescribed physical activity and hypocaloric diet. Dual-energy-X-ray absorptiometry measurements were performed at each time point, as well as blood was collected at the same points. Cells were incubated with sera of subjects before and after physical activity as described: obese at baseline and after for 4, 6, and 12 months of physical activity and nutritional protocol intervention. Osteoblasts exposed to sera of patients, who displayed increased lean and decreased fat mass (from 55.5 ± 6.5 to 57.1 ± 5.6% p ≤ 0.05; from 44.5 ± 1.1 to 40.9 ± 2.6% p ≤ 0.01 respectively), showed a time-dependent increase of Wnt/β-catenin signaling, versus cells exposed to sera of obese patients before intervention protocol, suggesting recovery of osteoblast homeostasis upon improvement of body composition. An increase in β-catenin nuclear accumulation and nuclear translocation was also observed, accompanied by an increase in Adiponectin receptor 1 protein expression, suggesting positive effect on cell differentiation program. Furthermore, a decrease in sclerostin amount and an increase of type 1 procollagen amino-terminal-propeptide were depicted as compared to baseline, proportionally to the time of physical activity, suggesting a recovery of bone remodeling modulation and an increase of osteoblast activity induced by improvement of body composition. In conclusion, our results show for the first time that sera of obese sedentary women who increased lean mass and decreased fat mass, by physical activity and hypocaloric diet, rescue osteoblasts differentiation and activity likely due to a reactivation of Wnt/β-catenin-pathway, suggesting that a correct life style can improve skeletal metabolic alteration induced by obesity
- …
