69 research outputs found

    Inflammatory profile of neurotrophins, IL-6, IL1-β, TNF-α, VEGF, ICAM-1 and TGF-β in the Human Waldeyer’s ring

    Get PDF
    The palatine tonsils, nasopharyngeal tonsil (adenoid) and lingual tonsil constitute the major part of Waldeyer’s ring, with the tubal tonsils and lateral pharyngeal bands as less prominent components. The lymphoid tissue of Waldeyer’s ring is located at the gateway of the respiratory and alimentary tract and belongs to the mucosa-associated lymphoid tissue (MALT). The lymphatic tissue is known to interact with the nervous system and several organs implicated in the host response to a wide range of stressors (Otten et al., 1995; Kaneko et al., 2012; Ogasawara et al., 2011). This study focusses on the expression of some neurotrophins (NTs), their high- and low-affinity receptors in human adenoid tissues, lingual and palatine tonsils via immunohistochemical analysis, as well as on the expression of some inflammatory cytokines and other tissue growth factors (IL-6, IL1-β, TNF-α, VEGF, ICAM-1 and TGF-β)). Light microscopy immunohistochemistry performed on human samples showed to be generally positive for all the NTs investigated (NGF, BDNF, NT-3) and their receptors (TrKA, TrKB and TrKC) as well as the other cytokines and growth factors studied with some different expression levels. Real time PCR analysis is in progress to quantitate these data. Our data corroborate previous studies, suggesting that neurotrophins and inflammatory cytokines may mediate functional signals in lymphoid aggregates (Yusuf-Makagiansar et al., 2002; Ruoco et al., 1990)

    Infrapatellar Fat Pad Stem Cells Responsiveness to Microenvironment in Osteoarthritis: From Morphology to Function

    Get PDF
    Recently, infrapatellar fat pad (IFP) has been considered as a source of stem cells for cartilage regeneration in osteoarthritis (OA) due to their ability for differentiation into chondrocytes. However, stressful conditions, like that related to OA, may induce a pathogenic reprograming. The aim of this study was to characterize the structural and functional properties of a new population of stem cells isolated from osteoarthritic infrapatellar fat pad (OA-IFP). Nine OA patients undergoing total knee arthroplasty (TKA) were enrolled in this study [median age = 74 years, interquartile range (IQR) = 78.25-67.7; median body mass index = 29.4 Kg/m2, IQR = 31.7-27.4]. OA-IFP stem cells were isolated and characterized for morphology, stemness, metabolic profile and multi-differentiative potential by transmission electron microscopy, flow cytometric analysis, gene expression study and cytochemistry. OA-IFP stem cells displayed a spindle-like morphology, self-renewal potential and responsiveness (CD44, CD105, VEGFR2, FGFR2, IL1R, and IL6R) to microenvironmental stimuli. Characterized by high grade of stemness (STAT3, NOTCH1, c-Myc, OCT-4, KLF4, and NANOG), the cells showed peculiar immunophenotypic properties (CD73+/CD39+/CD90+/CD105+/CD44\u2013/+/CD45\u2013). The expression of HLA-DR, CD34, Fas and FasL was indicative of a possible phenotypic reprograming induced by inflammation. Moreover, the response to mechanical stimuli together with high expression level of COL1A1 gene, suggested their possible protective response against in vivo mechanical overloading. Conversely, the low expression of CD38/NADase was indicative of their inability to counteract NAD+-mediated OA inflammation. Based on the ultrastructural, immunophenotypic and functional characterization, OA-IFP stem cells were hypothesized to be primed by the pathological environment and to exert incomplete protective activity from OA inflammation

    Ligand engagement of Toll-like receptors regulates their expression in cortical microglia and astrocytes

    Get PDF
    BACKGROUND: Toll-like receptor (TLR) activation on microglia and astrocytes are key elements in neuroinflammation which accompanies a number of neurological disorders. While TLR activation on glia is well-established to up-regulate pro-inflammatory mediator expression, much less is known about how ligand engagement of one TLR may affect expression of other TLRs on microglia and astrocytes. METHODS: In the present study, we evaluated the effects of agonists for TLR2 (zymosan), TLR3 (polyinosinic-polycytidylic acid (poly(I:C)), a synthetic analogue of double-stranded RNA) and TLR4 (lipopolysaccaride (LPS)) in influencing expression of their cognate receptor as well as that of the other TLRs in cultures of rat cortical purified microglia (>99.5 %) and nominally microglia-free astrocytes. Elimination of residual microglia (a common contaminant of astrocyte cultures) was achieved by incubation with the lysosomotropic agent L-leucyl-L-leucine methyl ester (L-LME). RESULTS: Flow cytometric analysis confirmed the purity (essentially 100 %) of the obtained microglia, and up to 5 % microglia contamination of astrocytes. L-LME treatment effectively removed microglia from the latter (real-time polymerase chain reaction). The three TLR ligands robustly up-regulated gene expression for pro-inflammatory markers (interleukin-1 and interleukin-6, tumor necrosis factor) in microglia and enriched, but not purified, astrocytes, confirming cellular functionality. LPS, zymosan and poly(I:C) all down-regulated TLR4 messenger RNA (mRNA) and up-regulated TLR2 mRNA at 6 and 24 h. In spite of their inability to elaborate pro-inflammatory mediator output, the nominally microglia-free astrocytes (>99 % purity) also showed similar behaviours to those of microglia, as well as changes in TLR3 gene expression. LPS interaction with TLR4 activates downstream mitogen-activated protein kinase and nuclear factor-ÎşB signalling pathways and subsequently causes inflammatory mediator production. The effects of LPS on TLR2 mRNA in both cell populations were antagonized by a nuclear factor-ÎşB inhibitor. CONCLUSIONS: TLR2 and TLR4 activation in particular, in concert with microglia and astrocytes, comprise key elements in the initiation and maintenance of neuropathic pain. The finding that both homologous (zymosan) and heterologous (LPS, poly(I:C)) TLR ligands are capable of regulating TLR2 gene expression, in particular, may have important implications in understanding the relative contributions of different TLRs in neurological disorders associated with neuroinflammation

    Mathematical analysis of a chemical reaction with lumped temperature and strong absorption

    Get PDF
    AbstractWe consider a mathematical model for the evolution of a single reactant and of the temperature in an isothermal catalyst. The temperature is assumed to be spatially homogeneous and the absorption term is supposed to be nonlipschitzian. Existence and uniqueness of a regular solution is proved together with some bounds. The steady-state problem is also investigated and information about the “dead-core” of the reactant are given

    Nonlocal models for the spread of new products in spatially structured markets

    No full text
    • …
    corecore