3,394 research outputs found
Cosmic microwave background constraints on the epoch of reionization
We use a compilation of cosmic microwave anisotropy data to constrain the
epoch of reionization in the Universe, as a function of cosmological
parameters. We consider spatially-flat cosmologies, varying the matter density
(the flatness being restored by a cosmological constant), the Hubble
parameter and the spectral index of the primordial power spectrum. Our
results are quoted both in terms of the maximum permitted optical depth to the
last-scattering surface, and in terms of the highest allowed reionization
redshift assuming instantaneous reionization. For critical-density models,
significantly-tilted power spectra are excluded as they cannot fit the current
data for any amount of reionization, and even scale-invariant models must have
an optical depth to last scattering of below 0.3. For the currently-favoured
low-density model with and a cosmological constant, the
earliest reionization permitted to occur is at around redshift 35, which
roughly coincides with the highest estimate in the literature. We provide
general fitting functions for the maximum permitted optical depth, as a
function of cosmological parameters. We do not consider the inclusion of tensor
perturbations, but if present they would strengthen the upper limits we quote.Comment: 9 pages LaTeX file with ten figures incorporated (uses mn.sty and
epsf). Corrects some equation typos, superseding published versio
A Thallium Mediated Route to \u3cem\u3eσ\u3c/em\u3e-Arylalkynyl Complexes of Bipyridyltricarbonylrhenium(I)
A simple, one-pot preparation of rhenium(I) σ-arylalkynyl complexes is reported using thallium(I) hexafluorophosphate as a halogen abstraction agent. This new route to rhenium σ-alkynyls enjoys higher yields compared to analogous preparations using silver salts by eliminating potential electrochemical degradation pathways
Triple unification of inflation, dark matter, and dark energy using a single field
We construct an explicit scenario whereby the same material driving inflation
in the early Universe can comprise dark matter in the present Universe, using a
simple quadratic potential. Following inflation and preheating, the density of
inflaton/dark matter particles is reduced to the observed level by a period of
thermal inflation, of a duration already invoked in the literature for other
reasons. Within the context of the string landscape, one can further argue for
a non-zero vacuum energy of this field, thus unifying inflation, dark matter
and dark energy into a single fundamental field.Comment: 5 pages RevTeX with 3 figures incorporate
Inflation, dark matter and dark energy in the string landscape
We consider the conditions needed to unify the description of dark matter,
dark energy and inflation in the context of the string landscape. We find that
incomplete decay of the inflaton field gives the possibility that a single
field is responsible for all three phenomena. By contrast, unifying dark matter
and dark energy into a single field, separate from the inflaton, appears rather
difficult.Comment: 4 pages RevTex4. Updated to include a toy model of reheating. Matches
version accepted by Phys Rev Let
Inflation and the cosmic microwave background
I give a status report and outlook concerning the use of the cosmic microwave
background anisotropies to constrain the inflationary cosmology, and stress its
crucial role as an underlying paradigm for the estimation of cosmological
parameters.Comment: 8 pages LaTeX file, with two figures incorporated using epsf. To
appear, proceedings of `The non-sleeping universe', Porto (Astrophysics and
Space Science
What can the observation of nonzero curvature tell us?
The eternally inflating multiverse provides a consistent framework to
understand coincidences and fine-tuning in the universe. As such, it provides
the possibility of finding another coincidence: if the amount of slow-roll
inflation was only slightly more than the anthropic threshold, then spatial
curvature might be measurable. We study this issue in detail, particularly
focusing on the question: "If future observations reveal nonzero curvature,
what can we conclude?" We find that whether an observable signal arises or not
depends crucially on three issues: the cosmic history just before the
observable inflation, the measure adopted to define probabilities, and the
nature of the correlation between the tunneling and slow-roll parts of the
potential. We find that if future measurements find positive curvature at
\Omega_k < -10^-4, then the framework of the eternally inflating multiverse is
excluded with high significance. If the measurements instead reveal negative
curvature at \Omega_k > 10^-4, then we can conclude (1) diffusive (new or
chaotic) eternal inflation did not occur in our immediate past; (2) our
universe was born by a bubble nucleation; (3) the probability measure does not
reward volume increase; and (4) the origin of the observed slow-roll inflation
is an accidental feature of the potential, not due to a theoretical mechanism.
Discovery of \Omega_k > 10^-4 would also give us nontrivial information about
the correlation between tunneling and slow-roll; e.g. a strong correlation
favoring large N would be excluded in certain measures. We also ask whether the
current constraint on \Omega_k is consistent with multiverse expectations,
finding that the answer is yes, except for certain cases. In the course of this
work we were led to consider vacuum decay branching ratios, and found that it
is more likely than one might guess that the decays are dominated by a single
channel.Comment: 46 pages, 5 figures; reference updates and typo corrections arising
from final Phys. Rev. D copy editin
Trans-Planckian signals from the breaking of local Lorentz invariance
This article examines how a breakdown of a locally Lorentz invariant,
point-like description of nature at tiny space-time intervals would translate
into a distinctive set of signals in the primordial power spectrum generated by
inflation. We examine the leading irrelevant operators that are consistent with
the spatial translations and rotations of a preferred, isotropically expanding,
background. A few of the resulting corrections to the primordial power spectrum
do not have the usual oscillatory factor, which is sometimes taken to be
characteristic of a "trans-Planckian" signal. Perhaps more interestingly, one
of these leading irrelevant operators exactly reproduces a correction to the
power spectrum that occurs in effective descriptions of the state of the field
responsible for inflation.Comment: 11 pages, no figures, uses ReVTe
Effects of f(R) Model on the Dynamical Instability of Expansionfree Gravitational Collapse
Dark energy models based on f(R) theory have been extensively studied in
literature to realize the late time acceleration. In this paper, we have chosen
a viable f(R) model and discussed its effects on the dynamical instability of
expansionfree fluid evolution generating a central vacuum cavity. For this
purpose, contracted Bianchi identities are obtained for both the usual matter
as well as dark source. The term dark source is named to the higher order
curvature corrections arising from f(R) gravity. The perturbation scheme is
applied and different terms belonging to Newtonian and post Newtonian regimes
are identified. It is found that instability range of expansionfree fluid on
external boundary as well as on internal vacuum cavity is independent of
adiabatic index but depends upon the density profile, pressure
anisotropy and f(R) model.Comment: 26 pages, no figure. arXiv admin note: text overlap with
arXiv:1108.266
Expansion-Free Evolving Spheres Must Have Inhomogeneous Energy Density Distributions
In a recent paper a systematic study on shearing expansion-free spherically
symmetric distributions was presented. As a particular case of such systems,
the Skripkin model was mentioned, which corresponds to a nondissipative perfect
fluid with a constant energy density. Here we show that such a model is
inconsistent with junction conditions. It is shown that in general for any
nondissipative fluid distribution, the expansion-free condition requires the
energy density to be inhomogeneous. As an example we consider the case of dust,
which allows for a complete integration.Comment: 8 pages, Latex. To appear in Phys. Rev.D. Typos correcte
Extended Inflation with a Curvature-Coupled Inflaton
We examine extended inflation models enhanced by the addition of a coupling
between the inflaton field and the space-time curvature. We examine two types
of model, where the underlying inflaton potential takes on second-order and
first-order form respectively. One aim is to provide models which satisfy the
solar system constraints on the Brans--Dicke parameter . This
constraint has proven very problematic in previous extended inflation models,
and we find circumstances where it can be successfully evaded, though the
constraint must be carefully assessed in our model and can be much stronger
than the usual . In the simplest versions of the model, one may
avoid the need to introduce a mass for the Brans--Dicke field in order to
ensure that it takes on the correct value at the present epoch, as seems to be
required in hyperextended inflation. We also briefly discuss aspects of the
formation of topological defects in the inflaton field itself.Comment: 24 pages, LaTeX (no figures), to appear, Physical Review D,
mishandling of the solar system constraint on extended gravity theories
corrected, SUSSEX-AST 93/6-
- …
