3,394 research outputs found

    Cosmic microwave background constraints on the epoch of reionization

    Full text link
    We use a compilation of cosmic microwave anisotropy data to constrain the epoch of reionization in the Universe, as a function of cosmological parameters. We consider spatially-flat cosmologies, varying the matter density Ω0\Omega_0 (the flatness being restored by a cosmological constant), the Hubble parameter hh and the spectral index nn of the primordial power spectrum. Our results are quoted both in terms of the maximum permitted optical depth to the last-scattering surface, and in terms of the highest allowed reionization redshift assuming instantaneous reionization. For critical-density models, significantly-tilted power spectra are excluded as they cannot fit the current data for any amount of reionization, and even scale-invariant models must have an optical depth to last scattering of below 0.3. For the currently-favoured low-density model with Ω0=0.3\Omega_0 = 0.3 and a cosmological constant, the earliest reionization permitted to occur is at around redshift 35, which roughly coincides with the highest estimate in the literature. We provide general fitting functions for the maximum permitted optical depth, as a function of cosmological parameters. We do not consider the inclusion of tensor perturbations, but if present they would strengthen the upper limits we quote.Comment: 9 pages LaTeX file with ten figures incorporated (uses mn.sty and epsf). Corrects some equation typos, superseding published versio

    A Thallium Mediated Route to \u3cem\u3eσ\u3c/em\u3e-Arylalkynyl Complexes of Bipyridyltricarbonylrhenium(I)

    Get PDF
    A simple, one-pot preparation of rhenium(I) σ-arylalkynyl complexes is reported using thallium(I) hexafluorophosphate as a halogen abstraction agent. This new route to rhenium σ-alkynyls enjoys higher yields compared to analogous preparations using silver salts by eliminating potential electrochemical degradation pathways

    Triple unification of inflation, dark matter, and dark energy using a single field

    Get PDF
    We construct an explicit scenario whereby the same material driving inflation in the early Universe can comprise dark matter in the present Universe, using a simple quadratic potential. Following inflation and preheating, the density of inflaton/dark matter particles is reduced to the observed level by a period of thermal inflation, of a duration already invoked in the literature for other reasons. Within the context of the string landscape, one can further argue for a non-zero vacuum energy of this field, thus unifying inflation, dark matter and dark energy into a single fundamental field.Comment: 5 pages RevTeX with 3 figures incorporate

    Inflation, dark matter and dark energy in the string landscape

    Get PDF
    We consider the conditions needed to unify the description of dark matter, dark energy and inflation in the context of the string landscape. We find that incomplete decay of the inflaton field gives the possibility that a single field is responsible for all three phenomena. By contrast, unifying dark matter and dark energy into a single field, separate from the inflaton, appears rather difficult.Comment: 4 pages RevTex4. Updated to include a toy model of reheating. Matches version accepted by Phys Rev Let

    Inflation and the cosmic microwave background

    Get PDF
    I give a status report and outlook concerning the use of the cosmic microwave background anisotropies to constrain the inflationary cosmology, and stress its crucial role as an underlying paradigm for the estimation of cosmological parameters.Comment: 8 pages LaTeX file, with two figures incorporated using epsf. To appear, proceedings of `The non-sleeping universe', Porto (Astrophysics and Space Science

    What can the observation of nonzero curvature tell us?

    Full text link
    The eternally inflating multiverse provides a consistent framework to understand coincidences and fine-tuning in the universe. As such, it provides the possibility of finding another coincidence: if the amount of slow-roll inflation was only slightly more than the anthropic threshold, then spatial curvature might be measurable. We study this issue in detail, particularly focusing on the question: "If future observations reveal nonzero curvature, what can we conclude?" We find that whether an observable signal arises or not depends crucially on three issues: the cosmic history just before the observable inflation, the measure adopted to define probabilities, and the nature of the correlation between the tunneling and slow-roll parts of the potential. We find that if future measurements find positive curvature at \Omega_k < -10^-4, then the framework of the eternally inflating multiverse is excluded with high significance. If the measurements instead reveal negative curvature at \Omega_k > 10^-4, then we can conclude (1) diffusive (new or chaotic) eternal inflation did not occur in our immediate past; (2) our universe was born by a bubble nucleation; (3) the probability measure does not reward volume increase; and (4) the origin of the observed slow-roll inflation is an accidental feature of the potential, not due to a theoretical mechanism. Discovery of \Omega_k > 10^-4 would also give us nontrivial information about the correlation between tunneling and slow-roll; e.g. a strong correlation favoring large N would be excluded in certain measures. We also ask whether the current constraint on \Omega_k is consistent with multiverse expectations, finding that the answer is yes, except for certain cases. In the course of this work we were led to consider vacuum decay branching ratios, and found that it is more likely than one might guess that the decays are dominated by a single channel.Comment: 46 pages, 5 figures; reference updates and typo corrections arising from final Phys. Rev. D copy editin

    Trans-Planckian signals from the breaking of local Lorentz invariance

    Full text link
    This article examines how a breakdown of a locally Lorentz invariant, point-like description of nature at tiny space-time intervals would translate into a distinctive set of signals in the primordial power spectrum generated by inflation. We examine the leading irrelevant operators that are consistent with the spatial translations and rotations of a preferred, isotropically expanding, background. A few of the resulting corrections to the primordial power spectrum do not have the usual oscillatory factor, which is sometimes taken to be characteristic of a "trans-Planckian" signal. Perhaps more interestingly, one of these leading irrelevant operators exactly reproduces a correction to the power spectrum that occurs in effective descriptions of the state of the field responsible for inflation.Comment: 11 pages, no figures, uses ReVTe

    Effects of f(R) Model on the Dynamical Instability of Expansionfree Gravitational Collapse

    Full text link
    Dark energy models based on f(R) theory have been extensively studied in literature to realize the late time acceleration. In this paper, we have chosen a viable f(R) model and discussed its effects on the dynamical instability of expansionfree fluid evolution generating a central vacuum cavity. For this purpose, contracted Bianchi identities are obtained for both the usual matter as well as dark source. The term dark source is named to the higher order curvature corrections arising from f(R) gravity. The perturbation scheme is applied and different terms belonging to Newtonian and post Newtonian regimes are identified. It is found that instability range of expansionfree fluid on external boundary as well as on internal vacuum cavity is independent of adiabatic index Γ\Gamma but depends upon the density profile, pressure anisotropy and f(R) model.Comment: 26 pages, no figure. arXiv admin note: text overlap with arXiv:1108.266

    Expansion-Free Evolving Spheres Must Have Inhomogeneous Energy Density Distributions

    Full text link
    In a recent paper a systematic study on shearing expansion-free spherically symmetric distributions was presented. As a particular case of such systems, the Skripkin model was mentioned, which corresponds to a nondissipative perfect fluid with a constant energy density. Here we show that such a model is inconsistent with junction conditions. It is shown that in general for any nondissipative fluid distribution, the expansion-free condition requires the energy density to be inhomogeneous. As an example we consider the case of dust, which allows for a complete integration.Comment: 8 pages, Latex. To appear in Phys. Rev.D. Typos correcte

    Extended Inflation with a Curvature-Coupled Inflaton

    Full text link
    We examine extended inflation models enhanced by the addition of a coupling between the inflaton field and the space-time curvature. We examine two types of model, where the underlying inflaton potential takes on second-order and first-order form respectively. One aim is to provide models which satisfy the solar system constraints on the Brans--Dicke parameter ω\omega. This constraint has proven very problematic in previous extended inflation models, and we find circumstances where it can be successfully evaded, though the constraint must be carefully assessed in our model and can be much stronger than the usual ω>500\omega > 500. In the simplest versions of the model, one may avoid the need to introduce a mass for the Brans--Dicke field in order to ensure that it takes on the correct value at the present epoch, as seems to be required in hyperextended inflation. We also briefly discuss aspects of the formation of topological defects in the inflaton field itself.Comment: 24 pages, LaTeX (no figures), to appear, Physical Review D, mishandling of the solar system constraint on extended gravity theories corrected, SUSSEX-AST 93/6-
    corecore