8 research outputs found

    High-resolution barotropic modeling and the calving of the Mertz Glacier, East Antarctica

    No full text
    In February 2010, the Mertz Glacier Tongue (MGT) calved, releasing an 80 Ă— 40 km iceberg. We have developed a high-resolution barotropic ocean model of the region to simulate the local circulation in response to tides and atmospheric forcing. We improve

    High-resolution barotropic modeling and the calving of the Mertz Glacier, East Antarctica

    Get PDF
    In February 2010, the Mertz Glacier Tongue (MGT) calved, releasing an 80 x 40 km iceberg. We have developed a high-resolution barotropic ocean model of the region to simulate the local circulation in response to tides and atmospheric forcing. We improved the coastline, grounding line position and built a new bathymetry using satellite imagery and older bathymetry data to derive the best available tidal model for the region. We compared this and other available models to seven different sea level observations available in the area and significantly improved the tidal solutions reaching a root sum square of 2.3 cm. This model was then run in different bathymetric configurations, considering the ice draft of the major icebergs B9B and C28, to simulate the circulation before, during, and after the calving event. The currents changed substantially in the neighborhood of the MGT and icebergs. The barotropic model with tidal and atmospheric forcing and the atmospheric wind fields allow us to evaluate the forces acting on the MGT. The sea surface slope force dominates the budget. Calving occurred when high tide and strong nontidal currents (due to atmospheric forcing) combined to lead to the monthly maximum forces exerted on the MGT (i.e., between 10 and 13 February 2010). While the forces are not unusually large at the calving time, the currents are largely enhanced in the rifting area. Therefore, processes related to these currents, like melting the ice melange inside the rifts, should be investigated to fully explain the final stage of the calving

    Vibrations of Mertz Glacier ice tongue, East Antarctica

    No full text
    At the time of its calving in February 2010, Mertz Glacier, East Antarctica, was characterized by a 145km long, 35km wide floating tongue. In this paper, we use GPS data from the Collaborative Research into Antarctic Calving and Iceberg Evolution (CRAC-ICE) 2007/08 and 2009/10 field seasons to investigate the dynamics of Mertz Glacier. Twomonths of data were collected at the end of the 2007/08 field season from two kinematic GPS stations situated on each side of the main rift of the glacier tongue and from rock stations located around the ice tongue during 2008/09. Using Precise Point Positioning with integer ambiguity fixing, we observe that the two GPS stations recorded vibrations of the ice tongue with several dominant periods. We compare these results with a simple elastic model of the ice tongue and find that the natural vibration frequencies are similar to those observed. This information provides a better understanding of their possible effects on rift propagation and hence on the glacier calving processes

    Rifting processes and ice-flow modulation observed on Mertz Glacier, East Antarctica

    No full text
    We investigated the evolution of two major rifts cutting across Mertz Glacier Tongue, East Antarctica, using a combination of satellite images and 60 day sets of GPS data from two stations deployed either side of the western rift in 2007. The eastern rift began to open in the early 1990s, and the western rift initiated in 2002 in conjunction with the collision of a large iceberg with the tongue. Velocity time series derived from the 2007 GPS data exhibited strong variations at tidal periods modulated by sea-surface height and sea-surface slope and reproduced here with a conceptually simple model. We found that opening of the western rift in 2002 leads to a dramatic change in behavior of the tongue as the large range in velocity (700-2400 m a(-1)) observed in 2000 was largely reduced (1075-1225 m a(-1)) in 2007. Opening of the western rift decoupled the glacier from the transverse loading on the tongue driven by east-west tidal circulation. This loading previously induced time-varying lateral drag, which caused the large velocity range. Our results suggest changes in the mechanical behavior of an ice tongue impact the dynamics of the outlet glacier system and should be considered in longer-term mass-balance evaluations

    Antarctic ice shelf disintegration triggered by sea ice loss and ocean swell

    No full text
    Published online 13 June 2018Understanding the causes of recent catastrophic ice shelf disintegrations is a crucial step towards improving coupled models of the Antarctic Ice Sheet and predicting its future state and contribution to sea-level rise. An overlooked climate-related causal factor is regional sea ice loss. Here we show that for the disintegration events observed (the collapse of the Larsen A and B and Wilkins ice shelves), the increased seasonal absence of a protective sea ice buffer enabled increased flexure of vulnerable outer ice shelf margins by ocean swells that probably weakened them to the point of calving. This outer-margin calving triggered wider-scale disintegration of ice shelves compromised by multiple factors in preceding years, with key prerequisites being extensive flooding and outer-margin fracturing. Wave-induced flexure is particularly effective in outermost ice shelf regions thinned by bottom crevassing. Our analysis of satellite and ocean-wave data and modelling of combined ice shelf, sea ice and wave properties highlights the need for ice sheet models to account for sea ice and ocean waves.Robert A. Massom, Theodore A. Scambos, Luke G. Bennetts, Phillip Reid, Vernon A. Squire and Sharon E. Stammerjoh
    corecore