15 research outputs found

    External Validation of a Model Determining Risk of Neoplastic Progression of Barrett\u27s Esophagus in a Cohort of Us Veterans

    Get PDF
    BACKGROUND AND AIMS: Risk of esophageal adenocarcinoma (EAC) in those with Barrett\u27s esophagus (BE) is 11-fold greater than the general population. It remains unclear which BE patients are at highest risk of progression to EAC. We aimed to validate a predictive model risk-stratifying BE patients. METHODS: We conducted a retrospective cohort study at the Houston Veteran Affairs Medical Center of consecutive patients with a new diagnosis of BE from November 1990 to January 2019. Study follow-up was through February 2020. Patients were excluded if they had no follow-up EGD with esophageal biopsy sampling after the initial BE-diagnosing EGD or evidence of high-grade dysplasia (HGD) or EAC on initial EGD. We performed an external validation study of a risk model containing sex, smoking, BE length, and low-grade dysplasia (LGD) status and assessed discriminatory ability using the area under the receiver operating characteristic curve (AUROC). RESULTS: Among 608 BE patients, 24 progressed to HGD/EAC. The points-based model discriminated well with an AUROC of .72 (95% confidence interval [CI], .63-.82). When categorized into low-, intermediate-, and high-risk groups according to published cutoffs, the AUROC was poor at .57. Restructured into low-risk versus high-risk groups, the AUROC was .72 (95% CI, .64-.80). Excluding baseline LGD did not reduce discriminatory ability (AUROC, .73; 95% CI, .64-.82). CONCLUSIONS: This external validation provides further evidence that the model including sex, LGD status, smoking status, and BE length may help to risk stratify BE patients. A simplified version excluding LGD status and/or reducing the number of risk groups has increased utility in clinical practice without loss of discriminatory ability

    Testcrosses are an efficient strategy for identifying cis-regulatory variation: Bayesian analysis of allele-specific expression (BayesASE)

    Get PDF
    Allelic imbalance (AI) occurs when alleles in a diploid individual are differentially expressed and indicates cis acting regulatory variation. What is the distribution of allelic effects in a natural population? Are all alleles the same? Are all alleles distinct? The approach described applies to any technology generating allele-specific sequence counts, for example for chromatin accessibility and can be applied generally including to comparisons between tissues or environments for the same genotype. Tests of allelic effect are generally performed by crossing individuals and comparing expression between alleles directly in the F1. However, a crossing scheme that compares alleles pairwise is a prohibitive cost for more than a handful of alleles as the number of crosses is at least (n2-n)/2 where n is the number of alleles. We show here that a testcross design followed by a hypothesis test of AI between testcrosses can be used to infer differences between nontester alleles, allowing n alleles to be compared with n crosses. Using a mouse data set where both testcrosses and direct comparisons have been performed, we show that the predicted differences between nontester alleles are validated at levels of over 90% when a parent-of-origin effect is present and of 60%-80% overall. Power considerations for a testcross, are similar to those in a reciprocal cross. In all applications, the testing for AI involves several complex bioinformatics steps. BayesASE is a complete bioinformatics pipeline that incorporates state-of-the-art error reduction techniques and a flexible Bayesian approach to estimating AI and formally comparing levels of AI between conditions. The modular structure of BayesASE has been packaged in Galaxy, made available in Nextflow and as a collection of scripts for the SLURM workload manager on github (https://github.com/McIntyre-Lab/BayesASE)

    Baseline Characteristics of Sars-Cov-2 Vaccine Non-Responders in a Large Population-Based Sample

    Get PDF
    INTRODUCTION: Studies indicate that individuals with chronic conditions and specific baseline characteristics may not mount a robust humoral antibody response to SARS-CoV-2 vaccines. In this paper, we used data from the Texas Coronavirus Antibody REsponse Survey (Texas CARES), a longitudinal state-wide seroprevalence program that has enrolled more than 90,000 participants, to evaluate the role of chronic diseases as the potential risk factors of non-response to SARS-CoV-2 vaccines in a large epidemiologic cohort. METHODS: A participant needed to complete an online survey and a blood draw to test for SARS-CoV-2 circulating plasma antibodies at four-time points spaced at least three months apart. Chronic disease predictors of vaccine non-response are evaluated using logistic regression with non-response as the outcome and each chronic disease + age as the predictors. RESULTS: As of April 24, 2023, 18,240 participants met the inclusion criteria; 0.58% (N = 105) of these are non-responders. Adjusting for age, our results show that participants with self-reported immunocompromised status, kidney disease, cancer, and other non-specified comorbidity were 15.43, 5.11, 2.59, and 3.13 times more likely to fail to mount a complete response to a vaccine, respectively. Furthermore, having two or more chronic diseases doubled the prevalence of non-response. CONCLUSION: Consistent with smaller targeted studies, a large epidemiologic cohort bears the same conclusion and demonstrates immunocompromised, cancer, kidney disease, and the number of diseases are associated with vaccine non-response. This study suggests that those individuals, with chronic diseases with the potential to affect their immune system response, may need increased doses or repeated doses of COVID-19 vaccines to develop a protective antibody level

    Antibody Duration after infection From Sars-Cov-2 in the Texas Coronavirus antibody Response Survey

    Get PDF
    Understanding the duration of antibodies to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus that causes COVID-19 is important to controlling the current pandemic. Participants from the Texas Coronavirus Antibody Response Survey (Texas CARES) with at least 1 nucleocapsid protein antibody test were selected for a longitudinal analysis of antibody duration. A linear mixed model was fit to data from participants (n = 4553) with 1 to 3 antibody tests over 11 months (1 October 2020 to 16 September 2021), and models fit showed that expected antibody response after COVID-19 infection robustly increases for 100 days postinfection, and predicts individuals may remain antibody positive from natural infection beyond 500 days depending on age, body mass index, smoking or vaping use, and disease severity (hospitalized or not; symptomatic or not)

    Power calculator for detecting allelic imbalance using hierarchical Bayesian model

    Get PDF
    Objective: Allelic imbalance (AI) is the differential expression of the two alleles in a diploid. AI can vary between tissues, treatments, and environments. Methods for testing AI exist, but methods are needed to estimate type I error and power for detecting AI and difference of AI between conditions. As the costs of the technology plummet, what is more important: reads or replicates? Results: We find that a minimum of 2400, 480, and 240 allele specific reads divided equally among 12, 5, and 3 replicates is needed to detect a 10, 20, and 30%, respectively, deviation from allelic balance in a condition with power > 80%. A minimum of 960 and 240 allele specific reads divided equally among 8 replicates is needed to detect a 20 or 30% difference in AI between conditions with comparable power. Higher numbers of replicates increase power more than adding coverage without affecting type I error. We provide a Python package that enables simulation of AI scenarios and enables individuals to estimate type I error and power in detecting AI and differences in AI between conditions

    Using the EM algorithm for Bayesian variable selection in logistic regression models with related covariates

    No full text
    <p>We develop a Bayesian variable selection method for logistic regression models that can simultaneously accommodate qualitative covariates and interaction terms under various heredity constraints. We use expectation-maximization variable selection (EMVS) with a deterministic annealing variant as the platform for our method, due to its proven flexibility and efficiency. We propose a variance adjustment of the priors for the coefficients of qualitative covariates, which controls false-positive rates, and a flexible parameterization for interaction terms, which accommodates user-specified heredity constraints. This method can handle all pairwise interaction terms as well as a subset of specific interactions. Using simulation, we show that this method selects associated covariates better than the grouped LASSO and the LASSO with heredity constraints in various exploratory research scenarios encountered in epidemiological studies. We apply our method to identify genetic and non-genetic risk factors associated with smoking experimentation in a cohort of Mexican-heritage adolescents.</p
    corecore