2,042 research outputs found

    Perturbative nonequilibrium dynamics of phase transitions in an expanding universe

    Get PDF
    A complete set of Feynman rules is derived, which permits a perturbative description of the nonequilibrium dynamics of a symmetry-breaking phase transition in λϕ4\lambda\phi^4 theory in an expanding universe. In contrast to a naive expansion in powers of the coupling constant, this approximation scheme provides for (a) a description of the nonequilibrium state in terms of its own finite-width quasiparticle excitations, thus correctly incorporating dissipative effects in low-order calculations, and (b) the emergence from a symmetric initial state of a final state exhibiting the properties of spontaneous symmetry breaking, while maintaining the constraint ≡0\equiv 0. Earlier work on dissipative perturbation theory and spontaneous symmetry breaking in Minkowski spacetime is reviewed. The central problem addressed is the construction of a perturbative approximation scheme which treats the initial symmetric state in terms of the field ϕ\phi, while the state that emerges at later times is treated in terms of a field ζ\zeta, linearly related to ϕ2\phi^2. The connection between early and late times involves an infinite sequence of composite propagators. Explicit one-loop calculations are given of the gap equations that determine quasiparticle masses and of the equation of motion for and the renormalization of these equations is described. The perturbation series needed to describe the symmetric and broken-symmetry states are not equivalent, and this leads to ambiguities intrinsic to any perturbative approach. These ambiguities are discussed in detail and a systematic procedure for matching the two approximations is described.Comment: 22 pages, using RevTeX. 6 figures. Submitted to Physical Review

    Dissipation in equations of motion of scalar fields

    Get PDF
    The methods of non-equilibrium quantum field theory are used to investigate the possibility of representing dissipation in the equation of motion for the expectation value of a scalar field by a friction term, such as is commonly included in phenomenological inflaton equations of motion. A sequence of approximations is exhibited which reduces the non-equilibrium theory to a set of local evolution equations. However, the adiabatic solution to these evolution equations which is needed to obtain a local equation of motion for the expectation value is not well defined; nor, therefore, is the friction coefficient. Thus, a non-equilibrium treatment is essential, even for a system that remains close to thermal equilibrium, and the formalism developed here provides one means of achieving this numerically.Comment: 17 pages, 5 figure

    Nonequilibrium perturbation theory for complex scalar fields

    Full text link
    Real-time perturbation theory is formulated for complex scalar fields away from thermal equilibrium in such a way that dissipative effects arising from the absorptive parts of loop diagrams are approximately resummed into the unperturbed propagators. Low order calculations of physical quantities then involve quasiparticle occupation numbers which evolve with the changing state of the field system, in contrast to standard perturbation theory, where these occupation numbers are frozen at their initial values. The evolution equation of the occupation numbers can be cast approximately in the form of a Boltzmann equation. Particular attention is given to the effects of a non-zero chemical potential, and it is found that the thermal masses and decay widths of quasiparticle modes are different for particles and antiparticles.Comment: 15 pages using RevTeX; 2 figures in 1 Postscript file; Submitted to Phys. Rev.

    Irradiated brown dwarfs

    Full text link
    We have observed the post common envelope binary WD0137-349 in the near infrared JJ, HH and KK bands and have determined that the photometry varies on the system period (116 min). The amplitude of the variability increases with increasing wavelength, indicating that the brown dwarf in the system is likely being irradiated by its 16500 K white dwarf companion. The effect of the (primarily) UV irradiation on the brown dwarf atmosphere is unknown, but it is possible that stratospheric hazes are formed. It is also possible that the brown dwarf (an L-T transition object) itself is variable due to patchy cloud cover. Both these scenarios are discussed, and suggestions for further study are made.Comment: 5 pages, 2 figures. Proceedings from "Brown dwarfs come of age" meeting in Fuerteventura 201

    Large-N transition temperature for superconducting films in a magnetic field

    Full text link
    We consider the NN-component Ginzburg-Landau model in the large NN limit, the system being embedded in an external constant magnetic field and confined between two parallel planes a distance LL apart from one another. On physical grounds, this corresponds to a material in the form of a film in the presence of an external magnetic field. Using techniques from dimensional and zetazeta-function regularization, modified by the external field and the confinement conditions, we investigate the behavior of the system as a function of the film thickness LL. This behavior suggests the existence of a minimal critical thickness below which superconductivity is suppressed.Comment: Revtex, two column, 4 pages, 2 figure

    Field-dependent diamagnetic transition in magnetic superconductor Sm1.85Ce0.15CuO4−ySm_{1.85} Ce_{0.15} Cu O_{4-y}

    Full text link
    The magnetic penetration depth of single crystal Sm1.85Ce0.15CuO4−y\rm{Sm_{1.85}Ce_{0.15}CuO_{4-y}} was measured down to 0.4 K in dc fields up to 7 kOe. For insulating Sm2CuO4\rm{Sm_2CuO_4}, Sm3+^{3+} spins order at the N\'{e}el temperature, TN=6T_N = 6 K, independent of the applied field. Superconducting Sm1.85Ce0.15CuO4−y\rm{Sm_{1.85}Ce_{0.15}CuO_{4-y}} (Tc≈23T_c \approx 23 K) shows a sharp increase in diamagnetic screening below T∗(H)T^{\ast}(H) which varied from 4.0 K (H=0H = 0) to 0.5 K (H=H = 7 kOe) for a field along the c-axis. If the field was aligned parallel to the conducting planes, T∗T^{\ast} remained unchanged. The unusual field dependence of T∗T^{\ast} indicates a spin freezing transition that dramatically increases the superfluid density.Comment: 4 pages, RevTex

    Nonequilibrium perturbation theory for spin-1/2 fields

    Get PDF
    A partial resummation of perturbation theory is described for field theories containing spin-1/2 particles in states that may be far from thermal equilibrium. This allows the nonequilibrium state to be characterized in terms of quasiparticles that approximate its true elementary excitations. In particular, the quasiparticles have dispersion relations that differ from those of free particles, finite thermal widths and occupation numbers which, in contrast to those of standard perturbation theory evolve with the changing nonequilibrium environment. A description of this kind is essential for estimating the evolution of the system over extended periods of time. In contrast to the corresponding description of scalar particles, the structure of nonequilibrium fermion propagators exhibits features which have no counterpart in the equilibrium theory.Comment: 16 pages; no figures; submitted to Phys. Rev.

    The Future of Gwydir: Community Engagement 2015-16

    Full text link
    In mid-2015 Gwydir Shire Council engaged the Centre for Local Government at the University of Technology Sydney (UTS:CLG) to conduct workshops with Council, a deliberative panel, and a community survey exploring the financial sustainability of Council and future service delivery in the local area

    The parasitic worm-derived immunomodulator, ES-62 and its drug-like small molecule analogues exhibit therapeutic potential in a model of chronic asthma

    Get PDF
    Chronic asthma is associated with persistent lung inflammation and long-term remodelling of the airways that have proved refractory to conventional treatments such as steroids, despite their efficacy in controlling acute airway contraction and bronchial inflammation. As its recent dramatic increase in industrialised countries has not been mirrored in developing regions, it has been suggested that helminth infection may protect humans against developing asthma. Consistent with this, ES-62, an immunomodulator secreted by the parasitic worm Acanthocheilonema viteae, can prevent pathology associated with chronic asthma (cellular infiltration of the lungs, particularly neutrophils and mast cells, mucus hyper-production and airway thickening) in an experimental mouse model. Importantly, ES-62 can act even after airway remodelling has been established, arresting pathogenesis and ameliorating the inflammatory flares resulting from repeated exposure to allergen that are a debilitating feature of severe chronic asthma. Moreover, two chemical analogues of ES-62, 11a and 12b mimic its therapeutic actions in restoring levels of regulatory B cells and suppressing neutrophil and mast cell responses. These studies therefore provide a platform for developing ES-62-based drugs, with compounds 11a and 12b representing the first step in the development of a novel class of drugs to combat the hitherto intractable disorder of chronic asthma
    • …
    corecore