19 research outputs found

    Collision of One-Dimensional Nonlinear Chains

    Full text link
    We investigate one-dimensional collisions of unharmonic chains and a rigid wall. We find that the coefficient of restitution (COR) is strongly dependent on the velocity of colliding chains and has a minimum value at a certain velocity. The relationship between COR and collision velocity is derived for low-velocity collisions using perturbation methods. We found that the velocity dependence is characterized by the exponent of the lowest unharmonic term of interparticle potential energy

    Hydrodynamics of driven granular gases

    Get PDF
    Hydrodynamic equations for granular gases driven by the Fokker-Planck operator are derived. Transport coefficients appeared in Navier-Stokes order change from the values of a free cooling state to those of a steady state.Comment: 5 pages, 3 figure

    Propagating front in an excited granular layer

    Full text link
    A partial monolayer of ~ 20000 uniform spherical steel beads, vibrated vertically on a flat plate, shows remarkable ordering transitions and cooperative behavior just below 1g maximum acceleration. We study the stability of a quiescent disordered or ``amorphous'' state formed when the acceleration is switched off in the excited ``gaseous'' state. The transition from the amorphous state back to the gaseous state upon increasing the plate's acceleration is generally subcritical: An external perturbation applied to one bead initiates a propagating front that produces a rapid transition. We measure the front velocity as a function of the applied acceleration. This phenomenon is explained by a model based on a single vibrated particle with multiple attractors that is perturbed by collisions. A simulation shows that a sufficiently high rate of interparticle collisions can prevent trapping in the attractor corresponding to the nonmoving ground state.Comment: 16 pages, 9 figures, revised version, to appear in Phys. Rev. E, May 199

    A Continuum Description of Vibrated Sand

    Full text link
    The motion of a thin layer of granular material on a plate undergoing sinusoidal vibrations is considered. We develop equations of motion for the local thickness and the horizontal velocity of the layer. The driving comes from the violent impact of the grains on the plate. A linear stability theory reveals that the waves are excited non-resonantly, in contrast to the usual Faraday waves in liquids. Together with the experimentally observed continuum scaling, the model suggests a close connection between the neutral curve and the dispersion relation of the waves, which agrees quite well with experiments. For strong hysteresis we find localized oscillon solutions.Comment: paper has been considerably extended (11 instead of 6 pages; 6 instead of 4 figures) much better agreement with experiment. obtain now oscillons in 1 dimensio

    Simulation for the oblique impact of a lattice system

    Full text link
    The oblique collision between an elastic disk and an elastic wall is numerically studied. We investigate the dependency of the tangential coefficient of restitution on the incident angle of impact. From the results of simulation, our model reproduces experimental results and can be explained by a phenomenological theory of the oblique impact.Comment: 30 pages, 9 figures, submitted to J. Phys. Soc. Japa
    corecore