420 research outputs found

    Contract Development In A Matching Market: The Case of Kidney Exchange

    Get PDF
    We analyze a new transplant innovation — Advanced Donation, referred to by some as a kidney “gift certificate,” “layaway plan,” or “voucher — as a case study offering insights on both market and contract development. Advanced Donation provides an unusual window into the evolution of the exchange of a single good — a kidney for transplantation — from gift, to simple barter, to exchange with a temporal separation of obligations that relies solely on trust and reputational constraints for enforcement, to a complex matching market in which the parties rely, at least in part, on formal contract to define and clarify their obligations to each other. The transplant community, however, has historically viewed formal contracts in the transplant setting with discomfort, and that traditional discomfort remains evident in current Advanced Donation practice. We conclude that the use of formal contracts in Advanced Donation is likely inadvertent, and the contracts, in a number of ways, are inadequate to tackle the complex, nonsimultaneous exchange of kidneys in which patients donate a kidney before their intended recipients have been matched with a potential donor

    Spin Polarized Current in the Ground State of Superconductor - Ferromagnet - Insulator Trilayers

    Full text link
    We study the ground state properties of a superconductor - ferromagnet - insulator trilayer on the basis of a Hubbard Model featuring exchange splitting in the ferromagnet and electron - electron attraction in the superconductor. We solve the spin - polarized Hartree - Fock - Gorkov equations together with the Maxwell's equation (Ampere's law) fully self-consistently. For certain values of the exchange splitting we find that a spontaneous spin polarized current is generated in the ground state and is intimately related to Andreev bound states at the Fermi level. Moreover, the polarization of the current strongly depends on the band filling.Comment: 13 pages, 14 figure

    Fulde-Ferrell-Larkin-Ovchinnikov-like state in Ferromagnet-Superconductor Proximity System

    Full text link
    We discuss some properties of the ferromagnet-superconductor proximity system. In particular, the emphasis is put on the physics of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) like state. In addition to Andreev reflections it features a number of unusual thermodynamic and transport properties, like: oscillatory behavior of the pairing amplitude, density of states and superconducting transition temperature as a function of the ferromagnet thickness. Surprisingly, under certain conditions spontaneous spin polarized current is generated in the ground state of such a system. We provide some informations regarding experimental observations of this exotic state.Comment: Talk given at Advanced Research Workshop on ''Physics of Spin in Solids: Materials, Methods & Applications'', Baku (October 2003

    Spontaneous currents in a ferromagnet - normal metal - superconductor trilayer

    Full text link
    We discuss the ground state properties of the system composed of a normal metal sandwiched between ferromagnet and superconductor within a tight binding Hubbard model. We have solved the spin-polarized Hartree-Fock-Gorkov equations together with the Maxwell's equation (Ampere's law) and found a proximity induced Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in this system. Here we show that the inclusion of the normal metal layer in between those subsystems does not necessarily lead to the suppression of the FFLO phase. Moreover, we have found that depending on the thickness of the normal metal slab the system can be switched periodically between the state with the spontaneous current flowing to that one with no current. All these effects can be explained in terms of the Andreev bound states formed in such structures.Comment: 6 pages, 4 figure

    Thermoelectric phenomena in a quantum dot asymmetrically coupled to external leads

    Full text link
    We study thermoelectric phenomena in a system consisting of strongly correlated quantum dot coupled to external leads in the Kondo regime. We calculate linear and nonlinear electrical and thermal conductance and thermopower of the quantum dot and discuss the role of asymmetry in the couplings to external electrodes. In the linear regime electrical and thermal conductances are modified, while thermopower remains unchanged. In the nonlinear regime the Kondo resonance in differential conductance develops at non-zero source-drain voltage, which has important consequences on thermoelectric properties of the system and the thermopower starts to depend on the asymmetry. We also discuss Wiedemann-Franz relation, thermoelectric figure of merit and validity of the Mott formula for thermopower.Comment: 6 pages, 7 figure

    Low-temperature transport through a quantum dot between two superconductor leads

    Full text link
    We consider a quantum dot coupled to two BCS superconductors with same gap energies Δ\Delta. The transport properties are investigated by means of infinite-UU noncrossing approximation. In equilibrium density of states, Kondo effect shows up as two sharp peaks around the gap bounds. Application of a finite voltage bias leads these peaks to split, leaving suppressed peaks near the edges of energy gap of each lead. The clearest signatures of the Kondo effect in transport are three peaks in the nonlinear differential conductance: one around zero bias, another two at biases ±2Δ\pm 2\Delta. This result is consistent with recent experiment. We also predict that with decreasing temperature, the differential conductances at biases ±2Δ\pm 2\Delta anomalously increase, while the linear conductance descends.Comment: replaced with revised versio

    A Difficult Conversation: Corporate Directors on Race and Gender

    Get PDF
    This symposium essay summarizes our ongoing ethnographic research on corporate board diversity. This research is based on fifty-seven interviews with corporate directors and a limited number of other persons of interest (including institutional investors, executive search professionals, and proxy advisors) regarding their views on race and gender diversity in the boardroom. Using a method rooted in anthropology and discourse analysis, we have worked from a general topic outline and conducted open-ended interviews in which respondents are encouraged to raise and develop issues of interest to them. The interviews range from forty-five minutes to two hours in length and each interview is taped and transcribed. As a group, we then listen to each taped interview at least once with transcript in hand, analyzing each interview qualitatively with a focus on the themes that the respondents identify, the emphases given to these themes, the stories (or narratives) that they tell, and the details of the language that they use. We also thematically code the transcripts and use sorting software to get another, complementary view of the frequency and distribution of the various themes. As we discuss at length in other published work, there are numerous tensions in directors’ accounts of race and gender in the boardroom. In this essay, we discuss what we view as the central tension in our respondents’ views on corporate board diversity—their overwhelmingly enthusiastic support of board diversity coupled with an inability to articulate coherent accounts of board diversity benefits that might rationalize that enthusiasm

    Geometric Semantic Grammatical Evolution

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer via the DOI in this record.Geometric Semantic Genetic Programming (GSGP) is a novel form of Genetic Programming (GP), based on a geometric theory of evolutionary algorithms, which directly searches the semantic space of programs. In this chapter, we extend this framework to Grammatical Evolution (GE) and refer to the new method as Geometric Semantic Grammatical Evolution (GSGE). We formally derive new mutation and crossover operators for GE which are guaranteed to see a simple unimodal fitness landscape. This surprising result shows that the GE genotypephenotype mapping does not necessarily imply low genotype-fitness locality. To complement the theory, we present extensive experimental results on three standard domains (Boolean, Arithmetic and Classifier)

    Kondo effect of an adatom in graphene and its scanning tunneling spectroscopy

    Get PDF
    We study the Kondo effect of a single magnetic adatom on the surface of graphene. It was shown that the unique linear dispersion relation near the Dirac points in graphene makes it more easy to form the local magnetic moment, which simply means that the Kondo resonance can be observed in a more wider parameter region than in the metallic host. The result indicates that the Kondo resonance indeed can form ranged from the Kondo regime, to the mixed valence, even to the empty orbital regime. While the Kondo resonance displays as a sharp peak in the first regime, it has a peak-dip structure and/or an anti-resonance in the remaining two regimes, which result from the Fano resonance due to the significant background leaded by dramatically broadening of the impurity level in graphene. We also study the scanning tunneling microscopy (STM) spectra of the adatom and they show obvious particle-hole asymmetry when the chemical potential is tuned by the gate voltages applied to the graphene. Finally, we explore the influence of the direct tunneling channel between the STM tip and the graphene on the Kondo resonance and find that the lineshape of the Kondo resonance is unaffected, which can be attributed to unusual large asymmetry factor in graphene. Our study indicates that the graphene is an ideal platform to study systematically the Kondo physics and these results are useful to further stimulate the relevant experimental studies on the system.Comment: 8 pages, 5 figure
    corecore