5,612 research outputs found

    Empirical study on clique-degree distribution of networks

    Full text link
    The community structure and motif-modular-network hierarchy are of great importance for understanding the relationship between structures and functions. In this paper, we investigate the distribution of clique-degree, which is an extension of degree and can be used to measure the density of cliques in networks. The empirical studies indicate the extensive existence of power-law clique-degree distributions in various real networks, and the power-law exponent decreases with the increasing of clique size.Comment: 9 figures, 4 page

    Direct CP violation for Bˉs0K0π+π\bar{B}_{s}^{0}\to K^{0}\pi^{+}\pi^{-} decay in QCD factorization

    Full text link
    In the framework of QCD factorization, based on the first order of isospin violation, we study direct CP violation in the decay of Bˉs0K0ρ0(ω)K0π+π\bar{B}_{s}^{0} \to K^{0}\rho^{0}(\omega)\to K^{0}\pi^{+}\pi^{-} including the effect of ρω\rho-\omega mixing. We find that the CP violating asymmetry is large via ρω\rho-\omega mixing mechanism when the invariant mass of the π+π\pi^{+}\pi^{-} pair is in the vicinity of the ω\omega resonance. For the decay of Bˉs0K0ρ0(ω)K0π+π\bar{B}_{s}^{0} \to K^{0}\rho^{0}(\omega)\to K^{0}\pi^{+}\pi^{-}, the maximum CP violating asymmetries can reach about 46%. We also discuss the possibility to observe the predicted CP violating asymmetries at the LHC

    Actin Filaments Target the Oligomeric Maturation of the Dynamin Gtpase Drp1 to Mitochondrial Fission Sites

    Get PDF
    While the dynamin GTPase Drp1 plays a critical role during mitochondrial fission, mechanisms controlling its recruitment to fission sites are unclear. A current assumption is that cytosolic Drp1 is recruited directly to fission sites immediately prior to fission. Using live-cell microscopy, we find evidence for a different model, progressive maturation of Drp1 oligomers on mitochondria through incorporation of smaller mitochondrially-bound Drp1 units. Maturation of a stable Drp1 oligomer does not forcibly lead to fission. Drp1 oligomers also translocate directionally along mitochondria. Ionomycin, a calcium ionophore, causes rapid mitochondrial accumulation of actin filaments followed by Drp1 accumulation at the fission site, and increases fission rate. Inhibiting actin polymerization, myosin IIA, or the formin INF2 reduces both un-stimulated and ionomycin-induced Drp1 accumulation and mitochondrial fission. Actin filaments bind purified Drp1 and increase GTPase activity in a manner that is synergistic with the mitochondrial protein Mff, suggesting a role for direct Drp1/actin interaction. We propose that Drp1 is in dynamic equilibrium on mitochondria in a fission-independent manner, and that fission factors such as actin filaments target productive oligomerization to fission sites

    Dye-sensitized solar cell with a pairof carbon-based electrodes

    Get PDF
    Cataloged from PDF version of article.We have fabricated a dye-sensitized solar cell (DSSC) with a pair of carbon-based electrodes using a transparent, conductive carbon nanotubes (CNTs) film modified with ultra-thin titanium-sub-oxide (TiOx) as the working electrode and a bilayer of conductive CNTs and carbon black as the counter electrode. Without TiOx modification, the DSSC is almost nonfunctional whereas the power conversion efficiency (PCE) increases significantly when the working electrode is modified with TiOx. The performance of the cell could be further improved when the carbon black film was added on the counter electrode. The improved efficiency can be attributed to the inhibition of the mass recombination at the working electrode/electrolyte interface by TiOx and the acceleration of the electron transfer kinetics at the counter electrode by carbon black. The DSSC with a pair of carbon-based electrodes gives the PCE of 1.37%

    Bridgeness: A Local Index on Edge Significance in Maintaining Global Connectivity

    Full text link
    Edges in a network can be divided into two kinds according to their different roles: some enhance the locality like the ones inside a cluster while others contribute to the global connectivity like the ones connecting two clusters. A recent study by Onnela et al uncovered the weak ties effects in mobile communication. In this article, we provide complementary results on document networks, that is, the edges connecting less similar nodes in content are more significant in maintaining the global connectivity. We propose an index named bridgeness to quantify the edge significance in maintaining connectivity, which only depends on local information of network topology. We compare the bridgeness with content similarity and some other structural indices according to an edge percolation process. Experimental results on document networks show that the bridgeness outperforms content similarity in characterizing the edge significance. Furthermore, extensive numerical results on disparate networks indicate that the bridgeness is also better than some well-known indices on edge significance, including the Jaccard coefficient, degree product and betweenness centrality.Comment: 10 pages, 4 figures, 1 tabl

    Drinfel'd Realization of Quantum Affine Superalgebra Uq(gl(11))^U_q\hat{(gl(1|1))}

    Full text link
    We obtain Drinfel'd's realization of quantum affine superalgebra Uq(gl(11))^U_q\hat{(gl(1|1))} based on the super version of RS construction method and Gauss decomposition

    Orbital-angular-momentum dependent speckles for spatial mode sorting and multiplexed data transmission

    Full text link
    Characterizing the orbital angular momentum (OAM) of a vortex beam is critically important for OAM-encoded data transfer. However, in typical OAM-based applications where vortex beams transmit through diffusers, the accompanying scattering effect tends to be either deliberately prevented, or characterized and then modulated actively based on complex wavefront shaping and interferometry techniques. Here, we aim to investigate the characteristics of blurred speckles obtained after a vortex beam transmits through a ground glass diffuser. It is theoretically and experimentally demonstrated that a cross-correlation annulus can be identified by implementing the cross-correlation operation between speckle patterns corresponding to vortex beams with different OAM values. Besides, it is worth noting that, the size of the cross-correlation annulus is determined by the absolute value of the topological charge difference between the two corresponding vortex beams. Based on this mechanism, the OAM modes can be easily sorted from the incoherently measured OAM-dependent speckles as well as their cross-correlation. Furthermore, to make full use of the orthogonal feature of the OAM-dependent speckles, demultiplexing of OAM-encoded data transfer is verified using a ground glass diffuser. Both 8-bit grayscale and 24-bit RGB OAM-encoded data transfers are carried out in experiments with superior error rates. We can conclude that the OAM-dependent speckles can be not only utilized as a competitive candidate for the OAM mode sorting function in a simple way but also provide an efficient method for the demultiplexing of OAM-encoded data transfer in a practical application
    corecore