290 research outputs found

    Principal Component Noise Filtering for NAST-I Radiometric Calibration

    Get PDF
    The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Airborne Sounder Testbed- Interferometer (NAST-I) instrument is a high-resolution scanning interferometer that measures emitted thermal radiation between 3.3 and 18 microns. The NAST-I radiometric calibration is achieved using internal blackbody calibration references at ambient and hot temperatures. In this paper, we introduce a refined calibration technique that utilizes a principal component (PC) noise filter to compensate for instrument distortions and artifacts, therefore, further improve the absolute radiometric calibration accuracy. To test the procedure and estimate the PC filter noise performance, we form dependent and independent test samples using odd and even sets of blackbody spectra. To determine the optimal number of eigenvectors, the PC filter algorithm is applied to both dependent and independent blackbody spectra with a varying number of eigenvectors. The optimal number of PCs is selected so that the total root-mean-square (RMS) error is minimized. To estimate the filter noise performance, we examine four different scenarios: apply PC filtering to both dependent and independent datasets, apply PC filtering to dependent calibration data only, apply PC filtering to independent data only, and no PC filters. The independent blackbody radiances are predicted for each case and comparisons are made. The results show significant reduction in noise in the final calibrated radiances with the implementation of the PC filtering algorithm

    Radiometric Modeling and Calibration of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS)Ground Based Measurement Experiment

    Get PDF
    The ultimate remote sensing benefits of the high resolution Infrared radiance spectrometers will be realized with their geostationary satellite implementation in the form of imaging spectrometers. This will enable dynamic features of the atmosphere s thermodynamic fields and pollutant and greenhouse gas constituents to be observed for revolutionary improvements in weather forecasts and more accurate air quality and climate predictions. As an important step toward realizing this application objective, the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) Engineering Demonstration Unit (EDU) was successfully developed under the NASA New Millennium Program, 2000-2006. The GIFTS-EDU instrument employs three focal plane arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The GIFTS calibration is achieved using internal blackbody calibration references at ambient (260 K) and hot (286 K) temperatures. In this paper, we introduce a refined calibration technique that utilizes Principle Component (PC) analysis to compensate for instrument distortions and artifacts, therefore, enhancing the absolute calibration accuracy. This method is applied to data collected during the GIFTS Ground Based Measurement (GBM) experiment, together with simultaneous observations by the accurately calibrated AERI (Atmospheric Emitted Radiance Interferometer), both simultaneously zenith viewing the sky through the same external scene mirror at ten-minute intervals throughout a cloudless day at Logan Utah on September 13, 2006. The accurately calibrated GIFTS radiances are produced using the first four PC scores in the GIFTS-AERI regression model. Temperature and moisture profiles retrieved from the PC-calibrated GIFTS radiances are verified against radiosonde measurements collected throughout the GIFTS sky measurement period. Using the GIFTS GBM calibration model, we compute the calibrated radiances from data collected during the moon tracking and viewing experiment events. From which, we derive the lunar surface temperature and emissivity associated with the moon viewing measurements

    Rangeland Ecological Management Counter-Measures Study of Xinjiang

    Get PDF
    Xinjiang is located in the hinterland of the Asian-Euro continental area and far from the ocean. It is surrounded by mountains and forms a physiognomic landscape of two basins located in three mountains. This results in an extremely droughty continental climate and a harsh environment in the Temperate Zone. However, the geographical environment is diverse in the Xinjiang Autonomous region, the three high mountains and complicated geographical structure results in changes in ecological conditions with altitude and a diverse ecological environment. Because of the drought characteristics the desert area has developed different types of vegetation, and the complexity of the system is increased and the rangeland plays a very important role in social economic development in the Xinjiang Area. The main issues in the management of the rangeland are: 1) because of agricultural development, a large area of pasture was utilised and soil water supplies have been jeopardised: the yield of pastures have been reduced but the number of animals have increased. 2) the harsh environment and the poor management system are the major problems of rangeland management in Xinjiang. The herdsmen in Xinjiang rely on natural conditions to supply sufficient feed for their animals, so the ability to sustain production when conditions are extreme are lowered and reduce the ability to supply feed during the long winter

    PFOS induces adipogenesis and glucose uptake in association with activation of Nrf2 signaling pathway

    Get PDF
    PFOS is a chemical of nearly ubiquitous exposure in humans. Recent studies have associated PFOS exposure to adipose tissue-related effects. The present study was to determine whether PFOS alters the process of adipogenesis and regulates insulin-stimulated glucose uptake in mouse and human preadipocytes. In murine-derived 3T3-L1 preadipocytes, PFOS enhanced hormone-induced differentiation to adipocytes and adipogenic gene expression, increased insulin-stimulated glucose uptake at concentrations ranging from 10 to 100 Ī¼M, and enhanced Glucose transporter type 4 and Insulin receptor substrate-1 expression. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), NAD(P)H dehydrogenase, quinone 1 and Glutamate-cysteine ligase, catalytic subunit were significantly induced in 3T3-L1 cells treated with PFOS, along with a robust induction of Antioxidant Response Element (ARE) reporter in mouse embryonic fibroblasts isolated from ARE-hPAP transgenic mice by PFOS treatment. Chromatin immunoprecipitation assays further illustrated that PFOS increased Nrf2 binding to ARE sites in mouse Nqo1 promoter, suggesting that PFOS activated Nrf2 signaling in murine-derived preadipocytes. Additionally, PFOS administration in mice (100 Ī¼g/kg/day) induced adipogenic gene expression and activated Nrf2 signaling in epididymal white adipose tissue. Moreover, the treatment on human visceral preadipocytes illustrated that PFOS (5 and 50 Ī¼M) promoted adipogenesis and increased cellular lipid accumulation. It was observed that PFOS increased Nrf2 binding to ARE sites in association with Nrf2 signaling activation, induction of Peroxisome proliferator-activated receptor Ī³ and CCAAT/enhancer-binding protein Ī± expression, and increased adipogenesis. This study points to a potential role of PFOS in dysregulation of adipose tissue expandability, and warrants further investigations on the adverse effects of persistent pollutants on human health

    Effect of Caloric Restriction and AMPK Activation on Hepatic Nuclear Receptor, Biotransformation Enzyme, and Transporter Expression in Lean and Obese Mice

    Get PDF
    Purpose: Fatty liver alters liver transporter expression. Caloric restriction (CR), the recommended therapy to reverse fatty liver, increases Sirtuin1 deacetylase activity in liver. This study evaluated whether CR and CR mimetics reversed obesity-induced transporter expression in liver and hepatocytes. Methods: mRNA and protein expression was determined in adult lean (lean) and leptin-deficient obese (OB) mice fed ad libitum or placed on 40% (kCal) reduced diet. Hepatocytes were isolated from lean and OB mice, treated with AMP Kinase activators, and gene expression was determined. Results: CR decreased Oatp1a1, Oatp1b2, and Abcb11 mRNA expression in lean, but not OB mice. CR increased Abcc2 mRNA OB livers, whereas protein expression increased in both genotypes. CR increased Abcc3 protein expression increased in OB livers. CR did not alter Abcc1, 4 and 5 mRNA expression in lean mice but decreased expression in livers of OB mice. CR increased Abcc4 protein in lean, but not OB mice. Conclusions: CR restriction reversed the expression of some, but not all transporters in livers of OB mice. Overall, these data indicate a potential for CR to restore some hepatic transporter changes in OB mice, but suggest a functional leptin axis is needed for reversal of expression for some transporters

    Enhanced Nrf2 Activity Worsens Insulin Resistance, Impairs Lipid Accumulation in Adipose Tissue, and Increases Hepatic Steatosis in Leptin-Deficient Mice

    Get PDF
    The study herein determined the role of nuclear factor erythoid 2ā€“related factor 2 (Nrf2) in the pathogenesis of hepatic steatosis, insulin resistance, obesity, and type 2 diabetes. Lepob/ob-Keap1-knockdown (KD) mice, which have increased Nrf2 activity, were generated. Markers of obesity and type 2 diabetes were measured in C57Bl/6J, Keap1-KD, Lepob/ob, and Lepob/ob-Keap1-KD mice. Lepob/ob-Keap1-KD mice exhibited less lipid accumulation, smaller adipocytes, decreased food intake, and reduced lipogenic gene expression. Enhanced Nrf2 activity impaired insulin signaling, prolonged hyperglycemia in response to glucose challenge, and induced insulin resistance in Lepob/ob background. Nrf2 augmented hepatic steatosis and increased lipid deposition in liver. Next, C57Bl/6J and Keap1-KD mice were fed a high-fat diet (HFD) to determine whether Keap1 and Nrf2 impact HFD-induced obesity. HFD-induced obesity and lipid accumulation in white adipose tissue was decreased in Keap1-KD mice. Nrf2 activation via Keap1-KD or sulforaphane suppressed hormone-induced differentiation and decreased peroxisome proliferatorā€“activated receptor-Ī³, CCAAT/enhancerā€“binding protein Ī±, and fatty acidā€“binding protein 4 expression in mouse embryonic fibroblasts. Constitutive Nrf2 activation inhibited lipid accumulation in white adipose tissue, suppressed adipogenesis, induced insulin resistance and glucose intolerance, and increased hepatic steatosis in Lepob/ob mice

    Keap1 knockdown increases markers of metabolic syndrome after long-term high fat diet feeding

    Get PDF
    The nuclear factor E2-related factor 2 (Nrf2)ā€“Kelch-like ECH-associated protein 1 (Keap1) pathway upregulates antioxidant and biotransformation enzyme expression to counter cellular oxidative stress. The contributions of Nrf2 to other cellular functions, such as lipid homeostasis, are emerging. This study was conducted to determine how enhanced Nrf2 activity influences the progression of metabolic syndrome with long-term high-fat diet (HFD) feeding. C57BL/6 and Keap1-knockdown (Keap1-KD) mice, which exhibit enhanced Nrf2 activity, were fed a HFD for 24 weeks. Keap1-KD mice had higher body weight and white adipose tissue mass compared to C57BL/6 mice on HFD, along with increased inflammation and lipogenic gene expression. HFD feeding increased hepatic steatosis and inflammation to a greater extent in Keap1-KD mice compared to C57BL/6 mice, which was associated with increased liver Cd36, fatty acid-binding protein 4, and monocyte chemoattractant protein 1 mRNA expression, as well as increased acetyl-CoA carboxylase 1 and stearoyl-CoA desaturase-1 protein expression. The HFD altered short-term glucose homeostasis to a greater degree in Keap-KD mice compared to C57BL/6 mice, which was accompanied by downregulation of insulin receptor substrate 1 mRNA expression in skeletal muscle. Together, the results indicate that Keap1 knockdown, on treatment with HFD, increases certain markers of metabolic syndrome

    Second SNPP Cal/Val Campaign: Environmental Data Retrieval Analysis

    Get PDF
    Satellite ultraspectral infrared sensors provide key data records essential for weather forecasting and climate change science. The Suomi National Polar-orbiting Partnership (Soumi NPP) satellite Environmental Data Records (EDRs) are retrieved from calibrated ultraspectral radiance or Sensor Data Records (SDRs). Understanding the accuracy of retrieved EDRs is critical. The second Suomi NPP Calibration/Validation field campaign was conducted during March 2015 with flights over Greenland. The NASA high-altitude ER-2 aircraft carrying ultraspectral interferometer sounders such as the National Airborne Sounder Testbed-Interferometer (NAST-I) flew under the Suomi NPP satellite that carries the Crosstrack Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS). Herein we inter-compare the EDRs produced from different retrieval algorithms employed on these satellite and aircraft campaign data. The available radiosonde measurements together with the European Centre for Medium-Range Weather Forecasts (ECMWF) analyses are used to assess atmospheric temperature and moisture retrievals from the aircraft and satellite platforms. Preliminary results of this experiment under a winter, Arctic environment are presented

    <i>amoA</i> Gene Abundances and Nitrification Potential Rates Suggest that Benthic Ammonia-Oxidizing Bacteria and Not Archaea Dominate N Cycling in the Colne Estuary, United Kingdom

    Get PDF
    ABSTRACT Nitrification, mediated by ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), is important in global nitrogen cycling. In estuaries where gradients of salinity and ammonia concentrations occur, there may be differential selections for ammonia-oxidizer populations. The aim of this study was to examine the activity, abundance, and diversity of AOA and AOB in surface oxic sediments of a highly nutrified estuary that exhibits gradients of salinity and ammonium. AOB and AOA communities were investigated by measuring ammonia monooxygenase ( amoA ) gene abundance and nitrification potentials both spatially and temporally. Nitrification potentials differed along the estuary and over time, with the greatest nitrification potentials occurring mid-estuary (8.2 Ī¼mol N grams dry weight [gdw] āˆ’1 day āˆ’1 in June, increasing to 37.4 Ī¼mol N gdw āˆ’1 day āˆ’1 in January). At the estuary head, the nitrification potential was 4.3 Ī¼mol N gdw āˆ’1 day āˆ’1 in June, increasing to 11.7 Ī¼mol N gdw āˆ’1 day āˆ’1 in January. At the estuary head and mouth, nitrification potentials fluctuated throughout the year. AOB amoA gene abundances were significantly greater (by 100-fold) than those of AOA both spatially and temporally. Nitrosomonas spp. were detected along the estuary by denaturing gradient gel electrophoresis (DGGE) band sequence analysis. In conclusion, AOB dominated over AOA in the estuarine sediments, with the ratio of AOB/AOA amoA gene abundance increasing from the upper (freshwater) to lower (marine) regions of the Colne estuary. These findings suggest that in this nutrified estuary, AOB (possibly Nitrosomonas spp.) were of major significance in nitrification. </jats:p
    • ā€¦
    corecore