285 research outputs found

    Basal Ganglia Involvement in the Playfulness of Juvenile Rats

    Full text link
    Play is an important part of normal childhood development and can be readily studied in the laboratory rat in the form of rough‐and‐tumble play. Given the robust nature of rough‐and‐tumble play, it has often been assumed that the basal ganglia would have a prominent role in modulating this behavior. Recent work using c‐fos expression as a metabolic marker for neural activity combined with temporary inactivation of relevant corticostriatal regions and pharmacological manipulations of opioid, cannabinoid, and dopamine systems has led to a better understanding of how basal ganglia circuitry may be involved in modulating social play in the juvenile rat. Studies using selective play deprivation have also provided insight into the consequences of playful experiences on basal ganglia function. Data reviewed in this paper support a role for the basal ganglia in social play and also suggest that corticostriatal functioning also benefits from playful activities

    UvA-DARE (Digital Academic Repository) Dissociable roles of mGlu5 and dopamine receptors in the rewarding and sensitizing properties of morphine and cocaine

    Get PDF
    General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. Results MTEP attenuated the development of morphinebut not cocaine-induced CPP. In contrast, MTEP suppressed the development of cocaine-but not morphineinduced psychomotor sensitization. α-Flupenthixol blocked the development of both cocaine-and morphine-induced CPP but did not affect the development of sensitization to either drug. Conclusion Dopamine receptor stimulation mediates cocaine and morphine reward but not sensitization. In contrast, the role of mGlu5 receptors in reward and sensitization is drug-specific

    Expression of amphetamine sensitization is associated with recruitment of a reactive neuronal population in the nucleus accumbens core

    Get PDF
    Rationale: Repeated exposure to psychostimulant drugs causes a long-lasting increase in the psychomotor and reinforcing effects of these drugs and an array of neuroadaptations. One such alteration is a hypersensitivity of striatal activity such that a low dose of amphetamine in sensitized animals produces dorsal striatal activation patterns similar to acute treatment with a high dose of amphetamine. Objectives: To extend previous findings of striatal hypersensitivity with behavioral observations and with cellular activity in the nucleus accumbens and prefrontal cortex in sensitized animals. Materials and methods: Rats treated acutely with 0, 1, 2.5, or 5 mg/kg i.p. amphetamine and sensitized rats challenged with 1 mg/kg i.p. amphetamine were scored for stereotypy, rearing, and grooming, and locomotor activity recorded. c-fos positive nuclei were quantified in the nucleus accumbens and prefrontal cortex after expression of sensitization with 1 mg/kg i.p. amphetamine. Results: Intense stereotypy was seen in animals treated acutely with 5 mg/kg amphetamine, but not in the sensitized group treated with 1 mg/kg amphetamine. The c-fos response to amphetamine in the accumbens core was augmented in amphetamine-pretreated animals with a shift in the distribution of optical density, while no effect of sensitization was seen in the nucleus accumbens shell or prefrontal cortex. Conclusions A lack of stereotypy in the sensitized group indicates a dissociation of behavioral responses to amphetamine and striatal immediate-early gene activation patterns. The increase in c-fos positive nuclei and shift in the distribution of optical density observed in the nucleus accumbens core suggests recruitment of a new population of neurons during expression of sensitization

    Cue-Elicited Craving in Heroin Addicts at Different Abstinent Time: An fMRI Pilot Study

    Get PDF
    Objective: We evaluated the effect of short-term and long-term heroin abstinence on brain responses to heroin-related cues using functional magnetic resonance imaging (fMRI). Methods: Eighteen male heroin addicts following short-term abstinence and 19 male heroin addicts following long-term abstinence underwent fMRI scanning while viewing heroin-related and neutral images. Cue-elicited craving and withdrawal symptoms in the subjects were measured. Results: Following short-term abstinence, greater activation was found in response to heroin cues compared to neutral cues in bilateral temporal, occipital, posterior cingulate, anterior cingulate, thalamus, cerebellum, and left hippocampus. In contrast, activations in bilateral temporal and occipital and deactivations in bilateral frontal, bilateral parietal, left posterior cingulate, insula, thalamus, dorsal striatum, and bilateral cerebellum were observed following long-term abstinence. Direct comparisons between conditions showed greater brain reactivity in response to smoking cues following short-term abstinence. In addition, short-term abstinence had more serious withdrawal symptoms than the long-term. Conclusion: The present findings indicate that compared to short-term, long-term abstinence manifests less serious withdrawal symptoms and significantly decreases neural responses to heroin-related cues in brain regions subserving visual sensory processing, attention, memory, and action planning. These findings suggest that long-term abstinence can decrease the salience of conditioned cues, thereby reducing the risk of relapses. The study's limitations are noted

    β-Adrenoreceptor Stimulation Mediates Reconsolidation of Social Reward-Related Memories

    Get PDF
    In recent years, the notion that consolidated memories become transiently unstable after retrieval and require reconsolidation to persist for later use has received strong experimental support. To date, the majority of studies on reconsolidation have focused on memories of negative emotions, while the dynamics of positive memories have been less well studied. Social play, the most characteristic social behavior displayed by young mammals, is important for social and cognitive development. It has strong rewarding properties, illustrated by the fact that it can induce conditioned place preference (CPP). In order to understand the dynamics of positive social memories, we evaluated the effect of propranolol, a β-adrenoreceptor antagonist known to influence a variety of memory processes, on acquisition, consolidation, retrieval and reconsolidation of social play-induced CPP in adolescent rats.Systemic treatment with propranolol, immediately before or after a CPP test (i.e. retrieval session), attenuated CPP 24 h later. Following extinction, CPP could be reinstated in saline--but not in propranolol-treated rats, indicating that propranolol treatment had persistently disrupted the CPP memory trace. Propranolol did not affect social play-induced CPP in the absence of memory retrieval or when administered 1 h or 6 h after retrieval. Furthermore, propranolol did not affect acquisition, consolidation or retrieval of social play-induced CPP.We conclude that β-adrenergic neurotransmission selectively mediates the reconsolidation, but not other processes involved in the storage and stability of social reward-related memories in adolescent rats. These data support the notion that consolidation and reconsolidation of social reward-related memories in adolescent rats rely on distinct neural mechanisms

    Acute and constitutive increases in central serotonin levels reduce social play behaviour in peri-adolescent rats

    Get PDF
    Item does not contain fulltextRATIONALE: Serotonin is an important modulator of social behaviour. Individual differences in serotonergic signalling are considered to be a marker of personality that is stable throughout lifetime. While a large body of evidence indicates that central serotonin levels are inversely related to aggression and sexual behaviour in adult rats, the relationship between serotonin and social behaviour during peri-adolescence has hardly been explored. OBJECTIVE: To study the effect of acute and constitutive increases in serotonin neurotransmission on social behaviour in peri-adolescent rats. MATERIALS AND METHODS: Social behaviour in peri-adolesent rats (28-35 days old) was studied after genetic ablation of the serotonin transporter, causing constitutively increased extra-neuronal serotonin levels, and after acute treatment with the serotonin reuptake inhibitor fluoxetine or the serotonin releasing agent 3,4-methylenedioxymethamphetamine (MDMA). A distinction was made between social play behaviour that mainly occurs during peri-adolescence, and non-playful social interactions that are abundant during the entire lifespan of rats. RESULTS: In serotonin transporter knockout rats, social play behaviour was markedly reduced, while non-playful aspects of social interaction were unaffected. Acute treatment with fluoxetine or MDMA dose-dependently inhibited social play behaviour. MDMA also suppressed non-playful social interaction but at higher doses than those required to reduce social play. Fluoxetine did not affect non-playful social interaction. CONCLUSIONS: These data show that both acute and constitutive increases in serotonergic neurotransmission reduce social play behaviour in peri-adolescent rats. Together with our previous findings of reduced aggressive and sexual behaviour in adult serotonin transporter knockout rats, these data support the notion that serotonin modulates social behaviour in a trait-like manner
    corecore