4,640 research outputs found
QCD in One Dimension at Nonzero Chemical Potential
Using an integration formula recently derived by Conrey, Farmer and
Zirnbauer, we calculate the expectation value of the phase factor of the
fermion determinant for the staggered lattice QCD action in one dimension. We
show that the chemical potential can be absorbed into the quark masses; the
theory is in the same chiral symmetry class as QCD in three dimensions at zero
chemical potential. In the limit of a large number of colors and fixed number
of lattice points, chiral symmetry is broken spontaneously, and our results are
in agreement with expressions based on a chiral Lagrangian. In this limit, the
eigenvalues of the Dirac operator are correlated according to random matrix
theory for QCD in three dimensions. The discontinuity of the chiral condensate
is due to an alternative to the Banks-Casher formula recently discovered for
QCD in four dimensions at nonzero chemical potential. The effect of temperature
on the average phase factor is discussed in a schematic random matrix model.Comment: Latex, 23 pages and 5 figures; Added two references and corrected
several typo
Self-referential cognition and empathy in autism.
BACKGROUND: Individuals with autism spectrum conditions (ASC) have profound impairments in the interpersonal social domain, but it is unclear if individuals with ASC also have impairments in the intrapersonal self-referential domain. We aimed to evaluate across several well validated measures in both domains, whether both self-referential cognition and empathy are impaired in ASC and whether these two domains are related to each other. METHODOLOGY/PRINCIPAL FINDINGS: Thirty adults aged 19-45, with Asperger Syndrome or high-functioning autism and 30 age, sex, and IQ matched controls participated in the self-reference effect (SRE) paradigm. In the SRE paradigm, participants judged adjectives in relation to the self, a similar close other, a dissimilar non-close other, or for linguistic content. Recognition memory was later tested. After the SRE paradigm, several other complimentary self-referential cognitive measures were taken. Alexithymia and private self-consciousness were measured via self-report. Self-focused attention was measured on the Self-Focus Sentence Completion task. Empathy was measured with 3 self-report instruments and 1 performance measure of mentalizing (Eyes test). Self-reported autistic traits were also measured with the Autism Spectrum Quotient (AQ). Although individuals with ASC showed a significant SRE in memory, this bias was decreased compared to controls. Individuals with ASC also showed reduced memory for the self and a similar close other and also had concurrent impairments on measures of alexithymia, self-focused attention, and on all 4 empathy measures. Individual differences in self-referential cognition predicted mentalizing ability and self-reported autistic traits. More alexithymia and less self memory was predictive of larger mentalizing impairments and AQ scores regardless of diagnosis. In ASC, more self-focused attention is associated with better mentalizing ability and lower AQ scores, while in controls, more self-focused attention is associated with decreased mentalizing ability and higher AQ scores. Increasing private self-consciousness also predicted better mentalizing ability, but only for individuals with ASC. CONCLUSIONS/SIGNIFICANCE: We conclude that individuals with ASC have broad impairments in both self-referential cognition and empathy. These two domains are also intrinsically linked and support predictions made by simulation theory. Our results also highlight a specific dysfunction in ASC within cortical midlines structures of the brain such as the medial prefrontal cortex
Oscillations of General Relativistic Multi-fluid/Multi-layer Compact Stars
We develop the formalism for determining the quasinormal modes of general
relativistic multi-fluid compact stars in such a way that the impact of
superfluid gap data can be assessed. Our results represent the first attempt to
study true multi-layer dynamics, an important step towards considering
realistic superfluid/superconducting compact stars. We combine a relativistic
model for entrainment with model equations of state that explicity incorporate
the symmetry energy. Our analysis emphasises the many different parameters that
are required for this kind of modelling, and the fact that standard tabulated
equations of state are grossly incomplete in this respect. To make progress,
future equations of state need to provide the energy density as a function of
the various nucleon number densities, the temperature (i.e. entropy), and the
entrainment among the various components
In medium T-matrix for nuclear matter with three-body forces - binding energy and single particle properties
We present spectral calculations of nuclear matter properties including
three-body forces. Within the in-medium T-matrix approach, implemented with the
CD-Bonn and Nijmegen potentials plus the three-nucleon Urbana interaction, we
compute the energy per particle in symmetric and neutron matter. The three-body
forces are included via an effective density dependent two-body force in the
in-medium T-matrix equations. After fine tuning the parameters of the
three-body force to reproduce the phenomenological saturation point in
symmetric nuclear matter, we calculate the incompressibility and the energy per
particle in neutron matter. We find a soft equation of state in symmetric
nuclear matter but a relatively large value of the symmetry energy. We study
the the influence of the three-body forces on the single-particle properties.
For symmetric matter the spectral function is broadened at all momenta and all
densities, while an opposite effect is found for the case of neutrons only.
Noticeable modification of the spectral functions are realized only for
densities above the saturation density. The modifications of the self-energy
and the effective mass are not very large and appear to be strongly suppressed
above the Fermi momentum.Comment: 20 pages, 11 figure
Thermalisation time and specific heat of neutron stars crust
We discuss the thermalisation process of the neutron stars crust described by
solving the heat transport equation with a microscopic input for the specific
heat of baryonic matter. The heat equation is solved with initial conditions
specific to a rapid cooling of the core. To calculate the specific heat of
inner crust baryonic matter, i.e., nuclear clusters and unbound neutrons, we
use the quasiparticle spectrum provided by the Hartree-Fock-Bogoliubov approach
at finite temperature. In this framework we analyse the dependence of the crust
thermalisation on pairing properties and on cluster structure of inner crust
matter. It is shown that the pairing correlations reduce the crust
thermalisation time by a very large fraction. The calculations show also that
the nuclear clusters have a non-negligible influence on the time evolution of
the surface temperature of the neutron star.Comment: 7 pages, 5 figures, submitted to Phys. Rev.
Pair condensation and bound states in fermionic systems
We study the finite temperature-density phase diagram of an attractive
fermionic system that supports two-body (dimer) and three-body (trimer) bound
states in free space. Using interactions characteristic for nuclear systems, we
obtain the critical temperature T_c2 for the superfluid phase transition and
the limiting temperature T_c3 for the extinction of trimers. The phase diagram
features a Cooper-pair condensate in the high-density, low-temperature domain
which, with decreasing density, crosses over to a Bose condensate of strongly
bound dimers. The high-temperature, low-density domain is populated by trimers
whose binding energy decreases toward the density-temperature domain occupied
by the superfluid and vanishes at a critical temperature T_c3 > T_c2.Comment: 11 pages, 4 figures, uses RevTex; v2: 12 pages, 4 figures, matches
published versio
Induced P-wave Superfluidity in Asymmetric Fermi Gases
We show that two new intra-species P-wave superfluid phases appear in
two-component asymmetric Fermi systems with short-range S-wave interactions. In
the BEC limit, phonons of the molecular BEC induce P-wave superfluidity in the
excess fermions. In the BCS limit, density fluctuations induce P-wave
superfluidity in both the majority and the minority species. These phases may
be realized in experiments with spin-polarized Fermi gases.Comment: published versio
Quantum effects after decoherence in a quenched phase transition
We study a quantum mechanical toy model that mimics some features of a
quenched phase transition. Both by virtue of a time-dependent Hamiltonian or by
changing the temperature of the bath we are able to show that even after
classicalization has been reached, the system may display quantum behaviour
again. We explain this behaviour in terms of simple non-linear analysis and
estimate relevant time scales that match the results of numerical simulations
of the master-equation. This opens new possibilities both in the study of
quantum effects in non-equilibrium phase transitions and in general
time-dependent problems where quantum effects may be relevant even after
decoherence has been completed.Comment: 7 pages, 7 figures, revtex, important revisions made. To be published
in Phys. Rev.
Microscopic calculation of neutrino mean free path inside hot neutron matter
We calculate the neutrino mean free path and the Equation of State of pure
neutron matter at finite temperature within a selfconsistent scheme based on
the Brueckner--Hartree--Fock approximation. We employ the nucleon-nucleon part
of the recent realistic baryon-baryon interaction (model NSC97e) constructed by
the Nijmegen group. The temperatures considered range from 10 to 80 MeV. We
report on the calculation of the mean field, the residual interaction and the
neutrino mean free path including short and long range correlations given by
the Brueckner--Hartree--Fock plus Random Phase Approximation (BHF+RPA)
framework. This is the first fully consistent calculation in hot neutron matter
dedicated to neutrino mean free path. We compare systematically our results to
those obtain with the D1P Gogny effective interaction, which is independent of
the temperature. The main differences between the present calculation and those
with nuclear effective interactions come from the RPA corrections to BHF (a
factor of about 8) while the temperature lack of consistency accounts for a
factor of about 2
- …