35,830 research outputs found

    Edinger-Westphal Nucleus

    Get PDF
    This report contains a summary of expression patterns for genes that are enriched in the Edinger-Westphal nucleus (EW) of the midbrain. All data are derived from the Allen Brain Atlas (ABA) in situ hybridization mouse project. The structure's location and morphological characteristics in the mouse brain are described using the Nissl data found in the Allen Reference Atlas. Using an established algorithm, the expression values of the Edinger-Westphal nucleus were compared to the values of its larger parent structure, in this case the midbrain, for the purpose of extracting regionally selective gene expression data. The highest ranking genes were manually curated and verified. 50 genes were then selected and compiled for expression analysis. The experimental data for each gene may be accessed via the links provided; additional data in the sagittal plane may also be accessed using the ABA. Correlations between gene expression in the Edinger-Westphal nucleus and the rest of the brain, across all genes in the coronal dataset (~4300 genes), were derived computationally. A gene ontology table (derived from DAVID Bioinformatics Resources 2007) is also included, highlighting possible functions of the 50 genes selected for this report. 
&#xa

    CA2 Pyramidal Layer

    Get PDF
    This report contains a gene expression summary of the CA2 pyramidal cell layer (CA2sp), derived from the Allen Brain Atlas (ABA) in situ hybridization mouse data set. The structure's location and morphological characteristics in the mouse brain are described using the Nissl data found in the Allen Reference Atlas. Using an established algorithm, the expression values of the CA2sp were compared to the values of the macro/parent-structure, in this case the pyramidal layer of Ammon’s Horn, for the purpose of extracting regionally selective gene expression data. The genes with the highest ranking selectivity ratios were manually curated and verified. 50 genes were then selected and compiled for expression characterization. The experimental data for each gene may be accessed via the links provided; additional data in the sagittal plane may also be accessed using the ABA. Correlations between gene expression in the CA2sp and the rest of the brain, across all genes in the coronal dataset (~4300 genes), were derived computationally. A gene ontology table (derived from DAVID Bioinformatics Resources 2007) is also included, highlighting possible functions of the 50 genes selected for this report

    Facial Motor Nucleus

    Get PDF
    This report contains a summary of expression patterns for genes that are enriched in the facial motor nucleus (VII) of the medulla. All data is derived from the Allen Brain Atlas (ABA) in situ hybridization mouse project. The structure's location and morphological characteristics in the mouse brain are described using the Nissl data found in the Allen Reference Atlas. Using an established algorithm, the expression values of the facial motor nucleus were compared to the values of its larger parent structure, in this case the medulla, for the purpose of extracting regionally selective gene expression data. The highest ranking genes were manually curated and verified. 50 genes were then selected and compiled for expression analysis. The experimental data for each gene may be accessed via the links provided; additional data in the sagittal plane may also be accessed using the ABA. Correlations between gene expression in the facial motor nucleus and the rest of the brain, across all genes in the coronal dataset (~4300 genes), were derived computationally. A gene ontology table (derived from DAVID Bioinformatics Resources 2007) is also included, highlighting possible functions of the 50 genes selected for this report

    Oculomotor Nucleus

    Get PDF
    This report contains a gene expression summary of the oculomotor nucleus, derived from the Allen Brain Atlas (ABA) in situ hybridization mouse data set. The structure's location and morphological characteristics in the mouse brain are described using the Nissl data found in the Allen Reference Atlas. Using an established algorithm, the expression values of the oculomotor nucleus were compared to the values of the macro/parent-structure, in this case the midbrain, for the purpose of extracting regionally selective gene expression data. The genes with the highest ranking selectivity ratios were manually curated and verified. 50 genes were then selected and compiled for expression characterization. The experimental data for each gene may be accessed via the links provided; additional data in the sagittal plane may also be accessed using the ABA. Correlations between gene expression in the oculomotor nucleus and the rest of the brain, across all genes in the coronal dataset (~4300 genes), were derived computationally. A gene ontology table (derived from DAVID Bioinformatics Resources 2007) is also included, highlighting possible functions of the 50 genes selected for this report

    Cerebellar Cortex, Purkinje Cell Layer

    Get PDF
    This report contains a summary of expression patterns for genes that are enriched in the Purkinje cell layer (CBXpu) of the cerebellum. All data is derived from the Allen Brain Atlas (ABA) in situ hybridization mouse project. The structure's location and morphological characteristics in the mouse brain are described using the Nissl data found in the Allen Reference Atlas. Using an established algorithm, the expression values of the CBXpu were compared to the values of its larger parent structure, in this case the cerebellar cortex, for the purpose of extracting regionally selective gene expression data. The highest ranking genes were manually curated and verified. 50 genes were then selected and compiled for expression analysis. The experimental data for each gene may be accessed via the links provided; additional data in the sagittal plane may also be accessed using the ABA. A gene ontology table (derived from DAVID Bioinformatics Resources 2007) is also included, highlighting possible functions of the 50 genes selected for this report. 
&#xa

    Dentate Gyrus

    Get PDF
    This report contains a gene expression summary of the dentate gyrus (DG), derived from the Allen Brain Atlas (ABA) _in situ_ hybridization mouse data set. The structure's location and morphological characteristics in the mouse brain are described using the Nissl data found in the Allen Reference Atlas. Using an established algorithm, the expression values of the dentate gyrus were compared to the values of the macro/parent-structure, in this case the hippocampal region, for the purpose of extracting regionally selective gene expression data. The genes with the highest ranking selectivity ratios were manually curated and verified. 50 genes were then selected and compiled for expression characterization. The experimental data for each gene may be accessed via the links provided; additional data in the sagittal plane may also be accessed using the ABA. Correlations between gene expression in the dentate gyrus and the rest of the brain, across all genes in the coronal dataset (~4300 genes), were derived computationally. A gene ontology table (derived from DAVID Bioinformatics Resources 2007) is also included, highlighting possible functions of the 50 genes selected for this report

    Motor Nucleus of the Trigeminal Nerve

    Get PDF
    This report contains a summary of expression patterns for genes that are enriched in the motor nucleus of the trigeminal nerve (V) of the pons. All data is derived from the Allen Brain Atlas (ABA) in situ hybridization mouse project. The structure's location and morphological characteristics in the mouse brain are described using the Nissl data found in the Allen Reference Atlas. Using an established algorithm, the expression values of the motor nucleus of the trigeminal nerve were compared to the values of its larger parent structure, in this case the pons, for the purpose of extracting regionally selective gene expression data. The highest ranking genes were manually curated and verified. 50 genes were then selected and compiled for expression analysis. The experimental data for each gene may be accessed via the links provided; additional data in the sagittal plane may also be accessed using the ABA. Correlations between gene expression in the motor nucleus of the trigeminal nerve and the rest of the brain, across all genes in the coronal dataset (~4300 genes), were derived computationally. A gene ontology table (derived from DAVID Bioinformatics Resources 2007) is also included, highlighting possible functions of the 50 genes selected for this report. 
&#xa

    Anterior Olfactory Nucleus

    Get PDF
    This report contains a gene expression summary of the anterior olfactory nucleus (AON), derived from the Allen Brain Atlas (ABA) in situ hybridization mouse data set. The structure's location and morphological characteristics in the mouse brain are described using the Nissl data found in the Allen Reference Atlas. Using an established algorithm, the expression values of the AON were compared to the values of the macro/parent-structure, in this case the olfactory areas, for the purpose of extracting regionally selective gene expression data. The genes with the highest ranking selectivity ratios were manually curated and verified. 50 genes were then selected and compiled for expression characterization. The experimental data for each gene may be accessed via the links provided; additional data in the sagittal plane may also be accessed using the ABA. Correlations between gene expression in the AON and the rest of the brain, across all genes in the coronal dataset (~4300 genes), were derived computationally. A gene ontology table (derived from DAVID Bioinformatics Resources 2007) is also included, highlighting possible functions of the 50 genes selected for this report

    Area Postrema

    Get PDF
    This report contains a gene expression summary of the area postrema (AP), derived from the "Allen Brain Atlas":http://www.brain-map.org/welcome.do;jsessionid=EDE40ADC940845D169DE378ADC9B71BD (ABA) in-situ hybridization (ISH) mouse data set. The structure’s location and morphological characteristics in the mouse brain are described using the Nissl data found in the "Allen Reference Atlas":http://www.brain-map.org/mouse/atlas/coronal/legend.html. Using an established algorithm, the expression values of the AP were compared to the values of the macro/parent-structure, in this case the medulla, for the purpose of extracting regionally specific gene expression data. The highest ranking ratios were then manually curated and verified. The 50 Select Genes were compiled for expression characterization. The experimental data for each gene may be accessed via the links provided; complementary sagittal data may also be accessed using the "ABA":http://www.brain-map.org/welcome.do. Correlation between gene expression in the AP and the rest of the brain, across all genes in the coronal dataset (~4300 genes), were derived computationally and are presented below. A gene ontology table (derived from DAVID Bioinformatics Resources 2007) is also included, highlighting possible functions of these 50 Select Genes. 
&#xa

    Innovation sustainability in challenging health-care contexts : embedding clinically led change in routine practice

    Get PDF
    The need for organizational innovation as a means of improving health-care quality and containing costs is widely recognized, but while a growing body of research has improved knowledge of implementation, very little has considered the challenges involved in sustaining change – especially organizational change led ‘bottom-up’ by frontline clinicians. This study addresses this lacuna, taking a longitudinal, qualitative case-study approach to understanding the paths to sustainability of four organizational innovations. It highlights the importance of the interaction between organizational context, nature of the innovation and strategies deployed in achieving sustainability. It discusses how positional influence of service leads, complexity of innovation, networks of support, embedding in existing systems, and proactive responses to changing circumstances can interact to sustain change. In the absence of cast-iron evidence of effectiveness, wider notions of value may be successfully invoked to sustain innovation. Sustainability requires continuing effort through time, rather than representing a final state to be achieved. Our study offers new insights into the process of sustainability of organizational change, and elucidates the complement of strategies needed to make bottom-up change last in challenging contexts replete with competing priorities
    corecore