10,248 research outputs found
Sequential Implementation of Monte Carlo Tests with Uniformly Bounded Resampling Risk
This paper introduces an open-ended sequential algorithm for computing the
p-value of a test using Monte Carlo simulation. It guarantees that the
resampling risk, the probability of a different decision than the one based on
the theoretical p-value, is uniformly bounded by an arbitrarily small constant.
Previously suggested sequential or non-sequential algorithms, using a bounded
sample size, do not have this property. Although the algorithm is open-ended,
the expected number of steps is finite, except when the p-value is on the
threshold between rejecting and not rejecting. The algorithm is suitable as
standard for implementing tests that require (re-)sampling. It can also be used
in other situations: to check whether a test is conservative, iteratively to
implement double bootstrap tests, and to determine the sample size required for
a certain power.Comment: Major Revision 15 pages, 4 figure
Vibronic interactions in the visible and near-infrared spectra of C60− anions
Electron-phonon coupling is an important factor in understanding many properties of the C60 fullerides. However, there has been little success in quantifying the strength of the vibronic coupling in C60 ions, with considerable disagreement between experimental and theoretical results. We will show that neglect of quadratic coupling in previous models for C60- ions results in a significant overestimate of the linear coupling constants. Including quadratic coupling allows a coherent interpretation to be made of earlier experimental and theoretical results which at first sight are incompatible
Role of dorsomedial striatum neuronal ensembles in incubation of methamphetamine craving after voluntary abstinence
Abstract
We recently developed a rat model of incubation of methamphetamine craving after choice-based voluntary abstinence. Here, we studied the role of dorsolateral striatum (DLS) and dorsomedial striatum (DMS) in this incubation. We trained rats to self-administer palatable food pellets (6 d, 6 h/d) and methamphetamine (12 d, 6 h/d). We then assessed relapse to methamphetamine seeking under extinction conditions after 1 and 21 abstinence days. Between tests, the rats underwent voluntary abstinence (using a discrete choice procedure between methamphetamine and food; 20 trials/d) for 19 d. We used in situ hybridization to measure the colabeling of the activity marker Fos with Drd1 and Drd2 in DMS and DLS after the tests. Based on the in situ hybridization colabeling results, we tested the causal role of DMS D1 and D2 family receptors, and DMS neuronal ensembles in "incubated" methamphetamine seeking, using selective dopamine receptor antagonists (SCH39166 or raclopride) and the Daun02 chemogenetic inactivation procedure, respectively. Methamphetamine seeking was higher after 21 d of voluntary abstinence than after 1 d (incubation of methamphetamine craving). The incubated response was associated with increased Fos expression in DMS but not in DLS; Fos was colabeled with both Drd1 and Drd2 DMS injections of SCH39166 or raclopride selectively decreased methamphetamine seeking after 21 abstinence days. In Fos-lacZ transgenic rats, selective inactivation of relapse test-activated Fos neurons in DMS on abstinence day 18 decreased incubated methamphetamine seeking on day 21. Results demonstrate a role of DMS dopamine D1 and D2 receptors in the incubation of methamphetamine craving after voluntary abstinence and that DMS neuronal ensembles mediate this incubation.
SIGNIFICANCE STATEMENT:
In human addicts, abstinence is often self-imposed and relapse can be triggered by exposure to drug-associated cues that induce drug craving. We recently developed a rat model of incubation of methamphetamine craving after choice-based voluntary abstinence. Here, we used classical pharmacology, in situ hybridization, immunohistochemistry, and the Daun02 inactivation procedure to demonstrate a critical role of dorsomedial striatum neuronal ensembles in this new form of incubation of drug craving
Quantum kinetic theory model of a continuous atom laser
We investigate the feasible limits for realising a continuously evaporated
atom laser with high-temperature sources. A plausible scheme for realising a
truly continuous atom laser is to outcouple atoms from a partially condensed
Bose gas, whilst continuously reloading the system with non-condensed thermal
atoms and performing evaporative cooling. Here we use quantum kinetic theory to
model this system and estimate feasible limits for the operation of such a
scheme. For sufficiently high temperatures, the figure of merit for the source
is shown to be the phase-space flux. The dominant process limiting the usage of
sources with low phase-space flux is the three-body loss of the condensed gas.
We conclude that certain double-magneto-optical trap (MOT) sources may produce
substantial mean condensate numbers through continuous evaporation, and provide
an atom laser source with a narrow linewidth and reasonable flux.Comment: 28 pages, 5 figure
Number-Phase Wigner Representation for Efficient Stochastic Simulations
Phase-space representations based on coherent states (P, Q, Wigner) have been
successful in the creation of stochastic differential equations (SDEs) for the
efficient stochastic simulation of high dimensional quantum systems. However
many problems using these techniques remain intractable over long integrations
times. We present a number-phase Wigner representation that can be unraveled
into SDEs. We demonstrate convergence to the correct solution for an anharmonic
oscillator with small dampening for significantly longer than other phase space
representations. This process requires an effective sampling of a non-classical
probability distribution. We describe and demonstrate a method of achieving
this sampling using stochastic weights.Comment: 7 pages, 1 figur
Modelling the hepatitis B vaccination programme in prisons
A vaccination programme offering hepatitis B (HBV) vaccine at reception into prison has been introduced into selected prisons in England and Wales. Over the coming years it is anticipated this vaccination programme will be extended. A model has been developed to assess the potential impact of the programme on the vaccination coverage of prisoners, ex-prisoners, and injecting drug users (IDUs). Under a range of coverage scenarios, the model predicts the change over time in the vaccination status of new entrants to prison, current prisoners and IDUs in the community. The model predicts that at baseline in 2012 57% of the IDU population will be vaccinated with up to 72% being vaccinated depending on the vaccination scenario implemented. These results are sensitive to the size of the IDU population in England and Wales and the average time served by an IDU during each prison visit. IDUs that do not receive HBV vaccine in the community are at increased risk from HBV infection. The HBV vaccination programme in prisons is an effective way of vaccinating this hard-to-reach population although vaccination coverage on prison reception must be increased to achieve this
Transverse-mode coupling in a Kerr medium
We analyze nonlinear transverse mode coupling in a Kerr medium placed in an
optical cavity and its influence on bistability and different kinds of quantum
noise reduction. Even for an input beam that is perfectly matched to a cavity
mode, the nonlinear coupling produces an excess noise in the fluctuations of
the output beam. Intensity squeezing seems to be particularly robust with
respect to mode coupling, while quadrature squeezing is more sensitive.
However, it is possible to find a mode the quadrature squeezing of which is not
affected by the coupling.Comment: 11 pages, 6 figures, LaTe
Erratum : Squeezing and entanglement delay using slow light
An inconsistency was found in the equations used to calculate the variance of
the quadrature fluctuations of a field propagating through a medium
demonstrating electromagnetically induced transparency (EIT). The decoherence
term used in our original paper introduces inconsistency under weak probe
approximation. In this erratum we give the Bloch equations with the correct
dephasing terms. The conclusions of the original paper remain the same. Both
entanglement and squeezing can be delayed and preserved using EIT without
adding noise when the decoherence rate is small.Comment: 1 page, no figur
Nanocrystallization and Amorphization Induced by Reactive Nitrogen Sputtering in Iron and Permalloy
Thin films of iron and permalloy Ni80Fe20 were prepared using an Ar+N2
mixture with magnetron sputtering technique at ambient temperature. The
nitrogen partial pressure, during sputtering process was varied in the range of
0 to 100%, keeping the total gas flow at constant. At lower nitrogen pressures
RN2<33% both Fe and NiFe, first form a nanocrystalline structure and an
increase in nitrogen partail pressure results in formation of an amorphous
structure. At intermediate nitrogen partial pressures, nitrides of Fe and NiFe
were obtained while at even higher nitrogen partial pressures, nitrides
themselves became nanocrystalline or amorphous. The surface, structural and
magnetic properties of the deposited films were studied using x-ray reflection
and diffraction, transmission electron microscopy, polarized neutron
reflectivity and using a DC extraction magnetometer. The growth behavior for
amorphous film was found different as compared with poly or nanocrystalline
films. The soft-magnetic properties of FeN were improved on nanocrystallization
while those of NiFeN were degraded. A mechanism inducing nanocrystallization
and amorphization in Fe and NiFe due to reactive nitrogen sputtering is
discussed in the present article.Comment: 13 Pages, 15 Figure
- …
