28 research outputs found

    Charge Isomers of Myelin Basic Protein: Structure and Interactions with Membranes, Nucleotide Analogues, and Calmodulin

    Get PDF
    As an essential structural protein required for tight compaction of the central nervous system myelin sheath, myelin basic protein (MBP) is one of the candidate autoantigens of the human inflammatory demyelinating disease multiple sclerosis, which is characterized by the active degradation of the myelin sheath. In this work, recombinant murine analogues of the natural C1 and C8 charge components (rmC1 and rmC8), two isoforms of the classic 18.5-kDa MBP, were used as model proteins to get insights into the structure and function of the charge isomers. Various biochemical and biophysical methods such as size exclusion chromatography, calorimetry, surface plasmon resonance, small angle X-ray and neutron scattering, Raman and fluorescence spectroscopy, and conventional as well as synchrotron radiation circular dichroism were used to investigate differences between these two isoforms, both from the structural point of view, and regarding interactions with ligands, including calmodulin (CaM), various detergents, nucleotide analogues, and lipids. Overall, our results provide further proof that rmC8 is deficient both in structure and especially in function, when compared to rmC1. While the CaM binding properties of the two forms are very similar, their interactions with membrane mimics are different. CaM can be used to remove MBP from immobilized lipid monolayers made of synthetic lipids - a phenomenon, which may be of relevance for MBP function and its regulation. Furthermore, using fluorescently labelled nucleotides, we observed binding of ATP and GTP, but not AMP, by MBP; the binding of nucleoside triphosphates was inhibited by the presence of CaM. Together, our results provide important further data on the interactions between MBP and its ligands, and on the differences in the structure and function between MBP charge isomers

    Effect of macromolecular crowding on the rate of diffusion-limited enzymatic reaction

    Full text link
    The cytoplasm of a living cell is crowded with several macromolecules of different shapes and sizes. Molecular diffusion in such a medium becomes anomalous due to the presence of macromolecules and diffusivity is expected to decrease with increase in macromolecular crowding. Moreover, many cellular processes are dependent on molecular diffusion in the cell cytosol. The enzymatic reaction rate has been shown to be affected by the presence of such macromolecules. A simple numerical model is proposed here based on percolation and diffusion in disordered systems to study the effect of macromolecular crowding on the enzymatic reaction rates. The model explains qualitatively some of the experimental observations.Comment: 6 pages, 4 figure

    Influence of membrane surface charge and post-translational modifications to myelin basic protein on its ability to tether the Fyn-SH3 domain to a membrane in vitro.

    No full text
    Myelin basic protein (MBP) is a highly post-translationally modified, multifunctional structural component of central nervous system myelin, adhering to phospholipid membranes and assembling cytoskeletal proteins, and has previously been shown to bind SH3 domains in vitro and tether them to a membrane surface [Polverini, E., et al. (2008) Biochemistry 47, 267-282]. Since molecular modeling shows that the Fyn-SH3 domain has a negative surface charge density even after binding the MBP ligand, we have investigated the influence of negative membrane surface charge and the effects of post-translational modifications to MBP on the interaction of the Fyn-SH3 domain with membrane-associated MBP. Using a sedimentation assay with multilamellar vesicles consisting of neutral phosphatidylcholine (PC) and negatively charged phosphatidylinositol (PI), we demonstrate that increasing the negative surface charge of the membrane by increasing the proportion of PI reduces the amount of Fyn-SH3 domain that binds to membrane-associated MBP, due to electrostatic repulsion. When one of the phosphoinositides, PI(4)P or PI(4,5)P2 was substituted for PI in equal proportion, none of the Fyn-SH3 domain bound to MBP under the conditions that were used. Post-translational modifications of MBP which reduced its net positive charge, i.e., phosphorylation or arginine deimination, increased the degree of repulsion of Fyn-SH3 from the membrane surface, an effect further modulated by the lipid charge. This study suggests that changes in membrane negative surface charge due to protein or lipid modifications, which could occur during cell signaling, can regulate the binding of the Fyn-SH3 domain to membrane-associated MBP and thus could regulate the activity of Fyn at the oligodendrocyte membrane surface

    Robot Swarming over the Internet

    No full text
    Abstract — We consider cooperative control of robots involving two different testbed systems in remote locations in different time zones, with communication on the internet. The goal is to have all robots properly follow a leader defined on one of the testbeds, while maintaining non-overlapping positions within each swarm and between swarms, assuming they are superimposed in the same virtual space. A dual-testbed design is developed involving real robots and remote network communication, performing a cooperative swarming algorithm based on a modified Morse Potential. Extensive experimental results were obtained with real internet communication and virtual testbeds running in each lab. The communication protocol was designed to minimize loss of packets, and average transfer delays are within tolerance limits for practical applications. We ran several experiments, with intentional packet loss, that illustrate the degradation of the results in the case of modest and severe packet loss. The novelty of this work is its experimental aspect involving long range network communication across a large distance via the internet. The work raises a series of interesting theoretical problems. I
    corecore