30 research outputs found
The Impact of Deep Fjord Water Temperatures on the Ice Flow Velocities of Helheim Glacier, Greenland
Increasing ice flow velocities of marine terminating glaciers are often linked to rising ocean temperatures. Unfortunately, direct comparisons between glacier velocity and ocean temperatures are impeded by the fact that few oceanographic datasets span multiple years or contain temperatures at depth.
Here, we use an oceanographic dataset collected in Helheim Fjord over several years (described in Straneo et al., 2011, Nat. Geoscience) in both shallow and deep waters. We compare the water temperatures at different depths with ice flow velocities that have been calculated from feature-tracking of LandSAT 7 and 8 images.
Our results cover the period 2009â2013 and show both seasonal and inter-annual variability. We find that the velocity of Helheim glacier is likely influenced by the deep ocean water temperatures, namely the influx of warm Atlantic water, whereas water temperature at shallower depths do not have a significant influence on glacier speed. This is in contrast with findings from, for example, Svalbard. Our study demonstrates the need for multipleâyear ocean datasets at different depths, if we are to disentangle the complex interactions between glaciers and ocean
Phased response of the subpolar Southern Ocean to changes in circumpolar winds
The response of the subpolar Southern Ocean (sSO) to wind forcing is assessed using satellite radar altimetry. sSO sea level exhibits a phased, zonally coherent, bimodal adjustment to circumpolar wind changes, involving comparable seasonal and interannual variations. The adjustment is effected via a quasi-instantaneous exchange of mass between the Antarctic continental shelf and the sSO to the north, and a 2-month-delayed transfer of mass between the wider Southern Ocean and the subtropics. Both adjustment modes are consistent with an Ekman-mediated response to variations in surface stress. Only the fast mode projects significantly onto the surface geostrophic flow of the sSO; thus, the regional circulation varies in phase with the leading edge of sSO sea level variability. The surface forcing of changes in the sSO system is partly associated with variations of surface winds linked to the Southern Annular Mode and is modulated by sea ice cover near Antarctica
ââObserving Antarctic Bottom Water in the Southern Oceanâ
Dense, cold waters formed on Antarctic continental shelves descend along the Antarctic continental margin, where they mix with other Southern Ocean waters to form Antarctic Bottom Water (AABW). AABW then spreads into the deepest parts of all major ocean basins, isolating heat and carbon from the atmosphere for centuries. Despite AABWâs key role in regulating Earthâs climate on long time scales and in recording Southern Ocean conditions, AABW remains poorly observed. This lack of observational data is mostly due to two factors. First, AABW originates on the Antarctic continental shelf and slope where in situ measurements are limited and ocean observations by satellites are hampered by persistent sea ice cover and long periods of darkness in winter. Second, north of the Antarctic continental slope, AABW is found below approximately 2 km depth, where in situ observations are also scarce and satellites cannot provide direct measurements. Here, we review progress made during the past decades in observing AABW. We describe 1) long-term monitoring obtained by moorings, by ship-based surveys, and beneath ice shelves through bore holes; 2) the recent development of autonomous observing tools in coastal Antarctic and deep ocean systems; and 3) alternative approaches including data assimilation models and satellite-derived proxies. The variety of approaches is beginning to transform our understanding of AABW, including its formation processes, temporal variability, and contribution to the lower limb of the global ocean meridional overturning circulation. In particular, these observations highlight the key role played by winds, sea ice, and the Antarctic Ice Sheet in AABW-related processes. We conclude by discussing future avenues for observing and understanding AABW, impressing the need for a sustained and coordinated observing system
Platelet ice attachment to instrument strings beneath the Amery Ice Shelf, East Antarctica
Oceanographic instruments suspended beneath the Amery Ice Shelf, East Antarctica, have recorded sporadic pressure decreases of 10â20 dbar over a few days at three sites where basal marine ice growth is expected. We attribute these events to flotation due to platelet ice accretion on the instrument moorings. Some events were transient, rapidly returning to pre-event pressures, probably through dislodgement of loosely attached crystals. Driven by these pressure changes, temperatures recorded by the shallowest instruments (within 20 m of the shelf base) tracked in situ freezing temperatures during the events. These observations provide indirect evidence for the presence of frazil ice in the sub-ice-shelf mixed layer and for active marine ice accretion. At one site we infer that a dense layer of platelet ice ?1.5 m thick was accreted to the ice shelf over a 50 day period. Following some permanent abrupt pressure decreases (which we interpret as due to the lodgement of the uppermost instrument at the ice-shelf base), altered background trends in pressure suggest compaction rates of 3â4 m aâ1 for the accreted basal platelet layer. Attachment of platelet ice and resulting displacement of moorings has ramifications for project design and instrument deployment, and implications for interpretation of oceanographic data from sub-ice-shelf environments
Basal melt, seasonal water mass transformation, ocean current variability, and deep convection processes along the Amery Ice Shelf calving front, East Antarctica
Despite the Amery Ice Shelf (AIS) being the third largest ice shelf in Antarctica, the seasonal variability of the physical processes involved in the AIS-ocean interaction remains undocumented and a robust observational, oceanographic-based basal melt rate estimate has been lacking. Here we use year-long time series of water column temperature, salinity, and horizontal velocities measured along the ice shelf front from 2001 to 2002. Our results show strong zonal variations in the distribution of water masses along the ice shelf front: modified Circumpolar Deep Water (mCDW) arrives in the east, while in the west, Ice Shelf Water (ISW) and Dense Shelf Water (DSW) formed in the Mackenzie polynya dominate the water column. Baroclinic eddies, formed during winter deep convection (down to 1100 m), drive the inflow of DSW into the ice shelf cavity. Our net basal melt rate estimate is 57.4â±â25.3 Gt yrâ1 (1â±â0.4 m yrâ1), larger than previous modeling-based and glaciological-based estimates, and results from the inflow of DSW (0.52â±â0.38 Sv; 1 Svâ=â106 m3 sâ1) and mCDW (0.22â±â0.06 Sv) into the cavity. Our results highlight the role of the Mackenzie polynya in the seasonal exchange of water masses across the ice shelf front, and the role of the ISW in controlling the formation rate and thermohaline properties of DSW. These two processes directly impact on the ice shelf mass balance, and on the contribution of DSW/ISW to the formation of Antarctic Bottom Water