5,407 research outputs found
Detailed Uncertainty Analysis of the Ares I A106 Liftoff/Transition Database
The Ares I A106 Liftoff/Transition Force and Moment Aerodynamics Database describes the aerodynamics of the Ares I Crew Launch Vehicle (CLV) from the moment of liftoff through the transition from high to low total angles of attack at low subsonic Mach numbers. The database includes uncertainty estimates that were developed using a detailed uncertainty quantification procedure. The Ares I Aerodynamics Panel developed both the database and the uncertainties from wind tunnel test data acquired in the NASA Langley Research Center s 14- by 22-Foot Subsonic Wind Tunnel Test 591 using a 1.75 percent scale model of the Ares I and the tower assembly. The uncertainty modeling contains three primary uncertainty sources: experimental uncertainty, database modeling uncertainty, and database query interpolation uncertainty. The final database and uncertainty model represent a significant improvement in the quality of the aerodynamic predictions for this regime of flight over the estimates previously used by the Ares Project. The maximum possible aerodynamic force pushing the vehicle towards the launch tower assembly in a dispersed case using this database saw a 40 percent reduction from the worst-case scenario in previously released data for Ares I
Assessment of CFD-based Response Surface Model for Ares I Supersonic Ascent Aerodynamics
The Ascent Force and Moment Aerodynamic (AFMA) Databases (DBs) for the Ares I Crew Launch Vehicle (CLV) were typically based on wind tunnel (WT) data, with increments provided by computational fluid dynamics (CFD) simulations for aspects of the vehicle that could not be tested in the WT tests. During the Design Analysis Cycle 3 analysis for the outer mold line (OML) geometry designated A106, a major tunnel mishap delayed the WT test for supersonic Mach numbers (M) greater than 1.6 in the Unitary Plan Wind Tunnel at NASA Langley Research Center, and the test delay pushed the final delivery of the A106 AFMA DB back by several months. The aero team developed an interim database based entirely on the already completed CFD simulations to mitigate the impact of the delay. This CFD-based database used a response surface methodology based on radial basis functions to predict the aerodynamic coefficients for M > 1.6 based on only the CFD data from both WT and flight Reynolds number conditions. The aero team used extensive knowledge of the previous AFMA DB for the A103 OML to guide the development of the CFD-based A106 AFMA DB. This report details the development of the CFD-based A106 Supersonic AFMA DB, constructs a prediction of the database uncertainty using data available at the time of development, and assesses the overall quality of the CFD-based DB both qualitatively and quantitatively. This assessment confirms that a reasonable aerodynamic database can be constructed for launch vehicles at supersonic conditions using only CFD data if sufficient knowledge of the physics and expected behavior is available. This report also demonstrates the applicability of non-parametric response surface modeling using radial basis functions for development of aerodynamic databases that exhibit both linear and non-linear behavior throughout a large data space
Deciphering mechanisms of staphylococcal biofilm evasion of host immunity.
Biofilms are adherent communities of bacteria contained within a complex matrix. Although host immune responses to planktonic staphylococcal species have been relatively well-characterized, less is known regarding immunity to staphylococcal biofilms and how they modulate anti-bacterial effector mechanisms when organized in this protective milieu. Previously, staphylococcal biofilms were thought to escape immune recognition on the basis of their chronic and indolent nature. Instead, we have proposed that staphylococcal biofilms skew the host immune response away from a proinflammatory bactericidal phenotype toward an anti-inflammatory, pro-fibrotic response that favors bacterial persistence. This possibility is supported by recent studies from our laboratory using a mouse model of catheter-associated biofilm infection, where S. aureus biofilms led to the accumulation of alternatively activated M2 macrophages that exhibit anti-inflammatory and pro-fibrotic properties. In addition, relatively few neutrophils were recruited into S. aureus biofilms, representing another mechanism that deviates from planktonic infections. However, it is important to recognize the diversity of biofilm infections, in that studies by others have demonstrated the induction of distinct immune responses during staphylococcal biofilm growth in other models, suggesting influences from the local tissue microenvironment. This review will discuss the immune defenses that staphylococcal biofilms evade as well as conceptual issues that remain to be resolved. An improved understanding of why the host immune response is unable to clear biofilm infections could lead to targeted therapies to reverse these defects and expedite biofilm clearance
Modified critical correlations close to modulated and rough surfaces
Correlation functions are sensitive to the presence of a boundary. Surface
modulations give rise to modified near surface correlations, which can be
measured by scattering probes. To determine these correlations, we develop a
perturbative calculation in deformations in height from a flat surface. The
results, combined with a renormalization group around four dimensions, are also
used to predict critical behavior near a self-affinely rough surface. We find
that a large enough roughness exponent can modify surface critical behavior.Comment: 4 pages, 1 figure. Revised version as published in Phys. Rev. Lett.
86, 4596 (2001
Variational cluster approach to the Hubbard model: Phase-separation tendency and finite-size effects
Using the variational cluster approach (VCA), we study the transition from
the antiferromagnetic to the superconducting phase of the two-dimensional
Hubbard model at zero temperature. Our calculations are based on a new method
to evaluate the VCA grand potential which employs a modified Lanczos algorithm
and avoids integrations over the real or imaginary frequency axis. Thereby,
very accurate results are possible for cluster sizes not accessible to full
diagonalization. This is important for an improved treatment of short-range
correlations, including correlations between Cooper pairs in particular. We
investigate the cluster-size dependence of the phase-separation tendency that
has been proposed recently on the basis of calculations for smaller clusters.
It is shown that the energy barrier driving the phase separation decreases with
increasing cluster size. This supports the conjecture that the ground state
exhibits microscopic inhomogeneities rather than macroscopic phase separation.
The evolution of the single-particle spectum as a function of doping is studied
in addtion and the relevance of our results for experimental findings is
pointed out.Comment: 7 pages, 6 figures, published versio
Correlation functions near Modulated and Rough Surfaces
In a system with long-ranged correlations, the behavior of correlation
functions is sensitive to the presence of a boundary. We show that surface
deformations strongly modify this behavior as compared to a flat surface. The
modified near surface correlations can be measured by scattering probes. To
determine these correlations, we develop a perturbative calculation in the
deformations in height from a flat surface. Detailed results are given for a
regularly patterned surface, as well as for a self-affinely rough surface with
roughness exponent . By combining this perturbative calculation in
height deformations with the field-theoretic renormalization group approach, we
also estimate the values of critical exponents governing the behavior of the
decay of correlation functions near a self-affinely rough surface. We find that
for the interacting theory, a large enough can lead to novel surface
critical behavior. We also provide scaling relations between roughness induced
critical exponents for thermodynamic surface quantities.Comment: 31 pages, 2 figure
MyD88-dependent signaling influences fibrosis and alternative macrophage activation during Staphylococcus aureus biofilm infection.
Bacterial biofilms represent a significant therapeutic challenge based on their ability to evade host immune and antibiotic-mediated clearance. Recent studies have implicated IL-1β in biofilm containment, whereas Toll-like receptors (TLRs) had no effect. This is intriguing, since both the IL-1 receptor (IL-1R) and most TLRs impinge on MyD88-dependent signaling pathways, yet the role of this key adaptor in modulating the host response to biofilm growth is unknown. Therefore, we examined the course of S. aureus catheter-associated biofilm infection in MyD88 knockout (KO) mice. MyD88 KO animals displayed significantly increased bacterial burdens on catheters and surrounding tissues during early infection, which coincided with enhanced dissemination to the heart and kidney compared to wild type (WT) mice. The expression of several proinflammatory mediators, including IL-6, IFN-γ, and CXCL1 was significantly reduced in MyD88 KO mice, primarily at the later stages of infection. Interestingly, immunofluorescence staining of biofilm-infected tissues revealed increased fibrosis in MyD88 KO mice concomitant with enhanced recruitment of alternatively activated M2 macrophages. Taken in the context of previous studies with IL-1β, TLR2, and TLR9 KO mice, the current report reveals that MyD88 signaling is a major effector pathway regulating fibrosis and macrophage polarization during biofilm formation. Together these findings represent a novel example of the divergence between TLR and MyD88 action in the context of S. aureus biofilm infection
Phase diagram and single-particle spectrum of CuO layers within a variational cluster approach to the 3-band Hubbard model
We carry out a detailed numerical study of the three-band Hubbard model in
the underdoped region both in the hole- as well as in the electron-doped case
by means of the variational cluster approach. Both the phase diagram and the
low-energy single-particle spectrum are very similar to recent results for the
single-band Hubbard model with next-nearest-neighbor hoppings. In particular,
we obtain a mixed antiferromagnetic+superconducting phase at low doping with a
first-order transition to a pure superconducting phase accompanied by phase
separation. In the single-particle spectrum a clear Zhang-Rice singlet band
with an incoherent and a coherent part can be seen, in which holes enter upon
doping around . The latter is very similar to the coherent
quasi-particle band crossing the Fermi surface in the single-band model. Doped
electrons go instead into the upper Hubbard band, first filling the regions of
the Brillouin zone around . This fact can be related to the enhanced
robustness of the antiferromagnetic phase as a function of electron doping
compared to hole doping.Comment: 14 pages, 15 eps figure
Dynamical Properties of Two Coupled Hubbard Chains at Half-filling
Using grand canonical Quantum Monte Carlo (QMC) simulations combined with
Maximum Entropy analytic continuation, as well as analytical methods, we
examine the one- and two-particle dynamical properties of the Hubbard model on
two coupled chains at half-filling. The one-particle spectral weight function,
, undergoes a qualitative change with interchain hopping
associated with a transition from a four-band insulator to a two-band
insulator. A simple analytical model based on the propagation of exact rung
singlet states gives a good description of the features at large . For
smaller , is similar to that of the
one-dimensional model, with a coherent band of width the effective
antiferromagnetic exchange reasonably well-described by renormalized
spin-wave theory. The coherent band rides on a broad background of width
several times the parallel hopping integral , an incoherent structure
similar to that found in calculations on both the one- and two-dimensional
models. We also present QMC results for the two-particle spin and charge
excitation spectra, and relate their behavior to the rung singlet picture for
large and to the results of spin-wave theory for small .Comment: 9 pages + 10 postscript figures, submitted to Phys.Rev.B, revised
version with isotropic t_perp=t data include
- …