125 research outputs found

    QGP fireball explosion

    Get PDF
    We identify the major physics milestones in the development of strange hadrons as an observable for both the formation of quark-gluon plasma, and of the ensuing explosive disintegration of deconfined matter fireball formed in relativistic heavy ion collisions at 160--20A GeV. We describe the physical properties of QGP phase and show agreement with the expectations based on an analysis of hadron abundances. We than also demonstrate that the m_t shape of hadron spectra is in qualitative agreement with the sudden breakup of a supercooled QGP fireball.Comment: 10 pages, incl. 4 figures J. Phys. G in press; presented at STRANGENESS2000 International Conference, Berkeley July 200

    Extracting Classical Correlations from a Bipartite Quantum System

    Get PDF
    In this paper we discuss the problem of splitting the total correlations for a bipartite quantum state described by the Von Neumann mutual information into classical and quantum parts. We propose a measure of the classical correlations as the difference between the Von Neumann mutual information and the relative entropy of entanglement. We compare this measure with different measures proposed in the literature.Comment: 5 pages, 1 figur

    The efficacy of lenvatinib plus everolimus in patients with metastatic renal cell carcinoma exhibiting primary resistance to front-line targeted therapy or immunotherapy

    Get PDF
    BACKGROUND: Patients with primary refractory metastatic renal cell carcinoma (mRCC) have a dismal prognosis and poor response to subsequent treatments. While there are several approved second-line therapies, it remains critical to choose the most effective treatment regimen. PATIENTS AND METHODS: We identified 7 patients with clear cell mRCC who had primary resistance to vascular endothelial growth factor (VEGF)-targeted tyrosine kinase inhibitors (TKIs) or immune checkpoint inhibitor (ICI) combination therapy. The patients were treated with lenvatinib (a multitargeted TKI) plus everolimus (a mammalian target of rapamycin inhibitor). Among these 7 patients, 2 had prior TKI therapy, 3 had prior ICI therapy, and 2 had prior TKI and ICI therapy. We collected the patients\u27 clinical characteristics, molecular profiles, treatment durations, and toxicity outcomes. RESULTS: The median time to progression on prior therapies was 1.5 months. Lenvatinib plus everolimus was used either as a second-line (n = 4) or third-line (n = 3) therapy. As best responses, 3 patients had partial responses and 3 achieved stable disease. Patients were followed for ≥17 months; progression-free survival ranged from 3 to 15 months, and overall survival ranged from 4 to 17 months. CONCLUSION: These 7 cases provide real-world data for the use of lenvatinib plus everolimus in patients with mRCC with primary resistance to first-line VEGF-targeted TKIs or ICI combination therapy

    Lower bounds for heights in relative Galois extensions

    No full text
    The goal of this paper is to obtain lower bounds on the height of an algebraic number in a relative setting, extending previous work of Amoroso and Masser. Specifically, in our first theorem, we obtain an effective bound for the height of an algebraic number α\alpha when the base field K\mathbb{K} is a number field and K(α)/K\mathbb{K}(\alpha)/\mathbb{K} is Galois. Our second result establishes an explicit height bound for any nonzero element α\alpha which is not a root of unity in a Galois extension F/K\mathbb{F}/\mathbb{K}, depending on the degree of K/Q\mathbb{K}/\mathbb{Q} and the number of conjugates of α\alpha which are multiplicatively independent over K\mathbb{K}. As a consequence, we obtain a height bound for such α\alpha that is independent of the multiplicative independence condition

    Strangeness Content in the Nucleon

    Get PDF
    I review recent studies of strangeness content in the nucleon pertaining to the flavor-singlet gA0g_A^0, the sˉs\bar{s}s matrix element and the strangeness electric and magnetic form factors GEs(q2)G_E^s(q^2) and GMs(q2)G_M^s(q^2), based on lattice QCD calculations. I shall also discuss the relevance of incorporating the strangeness content in nuclei in regard to strange baryon-antibaryon productions from proton-nucleus and nucleus-nucleus collisions at SPS and RHIC energies.Comment: 11 pages, 4 figures, Invited talk at V Int. Conf. on Strangeness in Quark Matter, Berkeley, CA, July 20--25, 200

    Strange Particle Production at RHIC

    Get PDF
    We report STAR measurements of mid-rapidity yields for the Λ\Lambda, Λˉ\bar{\Lambda}, KS0K^{0}_{S}, Ξ\Xi^{-}, Ξˉ+\bar{\Xi}^{+}, Ω\Omega^{-}, and Ωˉ+\bar{\Omega}^{+} particles in Cu+Cu and Au+Au sNN=200\sqrt{s_{NN}} = 200 GeV collisions. We show that at a given number of participating nucleons, bulk strangeness production is higher in Cu+Cu collisions compared to Au+Au collisions at the same center of mass energy, counter to predictions from the Canonical formalism. We compare both the Cu+Cu and Au+Au yields to AMPT and EPOS predictions, and find they reproduce key qualitative aspects of the data. Finally, we investigate other scaling parameters and find bulk strangeness production for both the measured data and theoretical predictions, scales better with the number participants that undergo more than one collision.Comment: Conference proceedings for Hot Quarks 2008, 5 pages and 4 figure

    System Size Dependence of Particle Production at the SPS

    Full text link
    Recent results on the system size dependence of net-baryon and hyperon production as measured at the CERN SPS are discussed. The observed Npart dependences of yields, but also of dynamical properties, such as average transverse momenta, can be described in the context of the core corona approach. Other observables, such as antiproton yields and net-protons at forward rapidities, do not follow the predictions of this model. Possible implications for a search for a critical point in the QCD phase diagram are discussed. Event-by-event fluctuations of the relative core to corona source contributions might influence fluctuation observables (e.g. multiplicity fluctuations). The magnitude of this effect is investigated.Comment: 10 pages, 4 figurs. Proceedings of the 6th International Workshop on Critical Point and Onset of Deconfinement in Dubna, Aug. 201

    Entropy Production in Relativistic Hydrodynamics

    Get PDF
    The entropy production occurring in relativistic hydrodynamical systems such as the quark-gluon plasma (QGP) formed in high-energy nuclear collisions is explored. We study mechanisms which change the composition of the fluid, i.e. particle production and/or chemical reactions, along with chemo- and thermo-diffusion. These effects complement the conventional dissipative effects of shear viscosity, bulk viscosity, and heat conductivity.Comment: 15 pages; LaTex. Accepted for publication in Physics Letters B. - Two typos corrected and one reference adde

    Resonances and fluctuations in the statistical model

    Full text link
    We describe how the study of resonances and fluctuations can help constrain the thermal and chemical freezeout properties of the fireball created in heavy ion collisions. This review is based on [1-5].Comment: Proceedings,"Hadronic resonance production in heavy ion and elementary collisions" UT Austin, March 5-7 201
    corecore