317 research outputs found

    The Backgrounds Data Center

    Get PDF
    The Strategic Defense Initiative Organization has created data centers for midcourse, plumes, and backgrounds phenomenologies. The Backgrounds Data Center (BDC) has been designated as the prime archive for data collected by SDIO programs. The BDC maintains a Summary Catalog that contains 'metadata,' that is, information about data, such as when the data were obtained, what the spectral range of the data is, and what region of the Earth or sky was observed. Queries to this catalog result in a listing of all data sets (from all experiments in the Summary Catalog) that satisfy the specified criteria. Thus, the user can identify different experiments that made similar observations and order them from the BDC for analysis. On-site users can use the Science Analysis Facility (SAFE for this purpose. For some programs, the BDC maintains a Program Catalog, which can classify data in as many ways as desired (rather than just by position, time, and spectral range as in the Summary Catalog). For example, data sets could be tagged with such diverse parameters as solar illumination angle, signal level, or the value of a particular spectral ratio, as long as these quantities can be read from the digital record or calculated from it by the ingest program. All unclassified catalogs and unclassified data will be remotely accessible

    On the stable configuration of ultra-relativistic material spheres. The solution for the extremely hot gas

    Full text link
    During the last stage of collapse of a compact object into the horizon of events, the potential energy of its surface layer decreases to a negative value below all limits. The energy-conservation law requires an appearance of a positive-valued energy to balance the decrease. We derive the internal-state properties of the ideal gas situated in an extremely strong, ultra-relativistic gravitational field and suggest to apply our result to a compact object with the radius which is slightly larger than or equal to the Schwarzschild's gravitational radius. On the surface of the object, we find that the extreme attractivity of the gravity is accompanied with an extremely high internal, heat energy. This internal energy implies a correspondingly high pressure, the gradient of which has such a behavior that it can compete with the gravity. In a more detail, we find the equation of state in the case when the magnitude of the potential-type energy of constituting gas particles is much larger than their rest energy. This equation appears to be identical with the general-relativity condition of the equilibrium between the gravity and pressure gradient. The consequences of the identity are discussed.Comment: 12 pages (no figure, no table) Changes in 3-rd version: added an estimate of neutrino cooling and relative time-scale of the final stage of URMS collaps

    Rotational symmetry of self-similar solutions to the Ricci flow

    Full text link
    Let (M,g) be a three-dimensional steady gradient Ricci soliton which is non-flat and \kappa-noncollapsed. We prove that (M,g) is isometric to the Bryant soliton up to scaling. This solves a problem mentioned in Perelman's first paper.Comment: Final version, to appear in Invent. Mat

    Relationships Between Subgingival Microbiota and GCF Biomarkers in Generalized Aggressive Periodontitis

    Get PDF
    Aim To examine relationships between subgingival biofilm composition and levels of gingival crevicular fluid (GCF) cytokines in periodontal health and generalized aggressive periodontitis (GAP). Materials and methods Periodontal parameters were measured in 25 periodontally healthy and 31 GAP subjects. Subgingival plaque and GCF samples were obtained from 14 sites from each subject. 40 subgingival taxa were quantified using checkerboard DNA-DNA hybridization and the concentrations of 8 GCF cytokines measured using Luminex. Cluster analysis was used to define sites with similar subgingival microbiotas in each clinical group. Significance of differences in clinical, microbiological and immunological parameters among clusters was determined using the Kruskal-Wallis test. Results GAP subjects had statistically significantly higher GCF levels of interleukin-1β (IL-1β) (p\u3c0.001), granulocyte-macrophage colony-stimulating factor (GM-CSF) (p\u3c0.01), and IL-1β/IL-10 ratio (p\u3c0.001) and higher proportions of Red and Orange complex species than periodontally healthy subjects. There were no statistically significant differences in the mean proportion of cytokines among clusters in the periodontally healthy subjects, while the ratio IL-1β/IL-10 (p\u3c0.05) differed significantly among clusters in the aggressive periodontitis group. Conclusions Different subgingival biofilm profiles are associated with distinct patterns of GCF cytokine expression. Aggressive periodontitis subjects were characterized by a higher IL-1β/IL-10 ratio than periodontally healthy subjects, suggesting an imbalance between pro- and anti-inflammatory cytokines in aggressive periodontitis

    Анализ развития систем впрыска топлива дизельных двигателей легковых автомобилей

    Get PDF
    The given paper considers dynamics of the development of diesel engine fuel injection systems. The scheme of up-to-date electronic control system of a high pressure fuel pump is presented in the paper. The interaction of input and output parameters of diesel engine fuel system and a number of requirements to diesel engine fuel system are analyzed in the paper.Рассматривается динамика развития систем впрыска топлива дизельных двигателей. Приводится схема современного электронного управления топливного насоса высокого давления. Анализируются взаимодействие входных и выходных параметров системы питания дизельного двигателя, комплекс требований к системе питания дизельного двигателя

    Colloquium: Nonlinear collective interactions in quantum plasmas with degenerate electron fluids

    Full text link
    The current understanding of some important nonlinear collective processes in quantum plasmas with degenerate electrons is presented. After reviewing the basic properties of quantum plasmas, we present model equations (e.g. the quantum hydrodynamic and effective nonlinear Schr\"odinger-Poisson equations) that describe collective nonlinear phenomena at nanoscales. The effects of the electron degeneracy arise due to Heisenberg's uncertainty principle and Pauli's exclusion principle for overlapping electron wavefunctions that result in tunneling of electrons and the electron degeneracy pressure. Since electrons are Fermions (spin-1/2), there also appears an electron spin current and a spin force acting on electrons due to the Bohr magnetization. The quantum effects produce new aspects of electrostatic (ES) and electromagnetic (EM) waves in a quantum plasma that are summarized in here. Furthermore, we discuss nonlinear features of ES ion waves and electron plasma oscillations (ESOs), as well as the trapping of intense EM waves in quantum electron density cavities. Specifically, simulation studies of the coupled nonlinear Schr\"odinger (NLS) and Poisson equations reveal the formation and dynamics of localized ES structures at nanoscales in a quantum plasma. We also discuss the effect of an external magnetic field on the plasma wave spectra and develop quantum magnetohydrodynamic (Q-MHD) equations. The results are useful for understanding numerous collective phenomena in quantum plasmas, such as those in compact astrophysical objects, in plasma-assisted nanotechnology, and in the next-generation of intense laser-solid density plasma interaction experiments.Comment: 25 pages, 14 figures. To be published in Reviews of Modern Physic

    Discrete molecular dynamics simulations of peptide aggregation

    Get PDF
    We study the aggregation of peptides using the discrete molecular dynamics simulations. At temperatures above the alpha-helix melting temperature of a single peptide, the model peptides aggregate into a multi-layer parallel beta-sheet structure. This structure has an inter-strand distance of 0.48 nm and an inter-sheet distance of 1.0 nm, which agree with experimental observations. In this model, the hydrogen bond interactions give rise to the inter-strand spacing in beta-sheets, while the Go interactions among side chains make beta-strands parallel to each other and allow beta-sheets to pack into layers. The aggregates also contain free edges which may allow for further aggregation of model peptides to form elongated fibrils.Comment: 15 pages, 8 figure

    The study of the negative pion production in neutron-proton collisions at beam momenta below 1.8 GeV/c

    Full text link
    A detailed investigation of the reaction np -> pp\pi^{-} has been carried out using the data obtained with the continuous neutron beam produced by charge exchange scattering of protons off a deuterium target. A partial wave event-by-event based maximum likelihood analysis was applied to determine contributions of different partial waves to the pion production process. The combined analysis of the np -> pp\pi^{-} and pp -> pp\pi^{0} data measured in the same energy region allows us to determine the contribution of isoscalar partial waves (I=0) in the momentum range from 1.1 up to 1.8 GeV/c. The decay of isoscalar partial waves into (^1S_0)_{pp}\pi$ channel provides a good tool for a determination of the pp S-wave scalar scattering length in the final state which was found to be a_{pp}=-7.5\pm 0.3 fm.Comment: 6 pages, 6 figure

    Bohm and Einstein-Sasaki Metrics, Black Holes and Cosmological Event Horizons

    Get PDF
    We study physical applications of the Bohm metrics, which are infinite sequences of inhomogeneous Einstein metrics on spheres and products of spheres of dimension 5 <= d <= 9. We prove that all the Bohm metrics on S^3 x S^2 and S^3 x S^3 have negative eigenvalue modes of the Lichnerowicz operator and by numerical methods we establish that Bohm metrics on S^5 have negative eigenvalues too. We argue that all the Bohm metrics will have negative modes. These results imply that higher-dimensional black-hole spacetimes where the Bohm metric replaces the usual round sphere metric are classically unstable. We also show that the stability criterion for Freund-Rubin solutions is the same as for black-hole stability, and hence such solutions using Bohm metrics will also be unstable. We consider possible endpoints of the instabilities, and show that all Einstein-Sasaki manifolds give stable solutions. We show how Wick rotation of Bohm metrics gives spacetimes that provide counterexamples to a strict form of the Cosmic Baldness conjecture, but they are still consistent with the intuition behind the cosmic No-Hair conjectures. We show how the Lorentzian metrics may be created ``from nothing'' in a no-boundary setting. We argue that Lorentzian Bohm metrics are unstable to decay to de Sitter spacetime. We also argue that noncompact versions of the Bohm metrics have infinitely many negative Lichernowicz modes, and we conjecture a general relation between Lichnerowicz eigenvalues and non-uniqueness of the Dirichlet problem for Einstein's equations.Comment: 53 pages, 11 figure
    corecore