5 research outputs found
A proteomic insight into the midgut proteome of Ornithodoros moubata females reveals novel information on blood digestion in argasid ticks
[Background]: The argasid tick Ornithodoros moubata is the main African vector of the human relapsing fever agent Borrelia duttoni and the African swine fever virus. Together with saliva, the tick midgut forms part of the host-tick-pathogen interface, and numerous midgut proteins play key functions in the blood digestion-related process and the infection and transmission of pathogens. This work explores the composition of the midgut proteome of unfed and fed O. moubata females with the aim to complete the biological information already obtained from the midgut transcriptome and provide a more robust and comprehensive perspective of this biological system.[Methods]: Midgut tissues taken from females before feeding and 48 h after feeding were subjected to LC/MS-MS analysis. After functional characterization and classification of the proteins identified, the differences in the proteome between unfed and fed females were analysed and discussed. Additionally, a detailed analysis of particular groups of proteins that are involved in the processes of nutrient digestion and responses to the oxidative stress was carried out.[Results]: 1491 non-redundant tick proteins were identified: 1132 of them in the midgut of unfed ticks, 1138 in the midgut of fed ticks, and up to 779 shared by both physiological conditions. Overall, the comparative analysis of the midgut proteomes of O. moubata females before and after feeding did not reveal great differences in the number or class of proteins expressed, enzymatic composition or functional classification.[Conclusions]: The hemoglobinolytic system in ixodids and argasids is very similar in spite of the fact that they display very different feeding and reproductive strategies. Although the main source of nutrients in ticks are proteins, lipids and carbohydrates also constitute significant nutritional sources and play an important part in the process of blood digestion. The genes and proteins involved in intracellular transport mechanisms, defensive responses, detoxifying responses and stress responses seem to be closely regulated, highlighting the complexity and importance of these processes in tick biology, which in turn assigns them a great interest as targets for therapeutic and immunological interventions.We acknowledge the support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI).This research was funded by project AGL2013–42745-P granted by the Spanish Ministry of Economy and Competitiveness.Peer reviewe