34 research outputs found

    Bitter Taste Receptors and Endocrine Disruptors: Cellular and Molecular Insights from an In Vitro Model of Human Granulosa Cells

    Get PDF
    Endocrine disrupting chemicals (EDCs) are compounds that interfere with the synthesis, transport and binding action of hormones responsible for reproduction and homeostasis. Some EDCs compounds are activators of Taste bitter Receptors, a subclass of taste receptors expressed in many extraoral locations, including sperm and follicular somatic cells. This makes TAS2Rs attractive molecules to study and investigate to shed light on the effect of EDCs on female reproduction and fertility. This study aims to assess the effect of selected EDCs [namely Biochanin A (BCA), caffeine, Daidzein, Genistein and Isoflavone] on hGL5, an immortalized cell line exhibiting characteristics coherent with primary follicular granulosa cells. After demonstrating that this model expresses all the TAS2Rs (TAS2R3, TAS2R4, TAS2R14, TAS2R19, TAS2R43) specifically expressed by the primary human granulosa cells, we demonstrated that BCA and caffeine significantly affect mitochondrial footprint and intracellular lipid content, indicating their contribution in steroidogenesis. Our results showed that bitter taste receptors may be involved in steroidogenesis, thus suggesting an appealing mechanism by which these compounds affect the female reproductive system

    Organoids of Human Endometrium: A Powerful In Vitro Model for the Endometrium-Embryo Cross-Talk at the Implantation Site

    Get PDF
    Embryo implantation has been defined as the "black box" of human reproduction. Most of the knowledge on mechanisms underlining this process derives from animal models, but they cannot always be translated to humans. Therefore, the development of an in vitro/ex vivo model recapitulating as closely and precisely as possible the fundamental functional features of the human endometrial tissue is very much desirable. Here, we have validated endometrial organoids as a suitable 3D-model to studying epithelial endometrial interface for embryo implantation. Transmission and scanning electron microscopy analyses showed that organoids preserve the glandular organization and cell ultrastructural characteristics. They also retain the responsiveness to hormonal treatment specific to the corresponding phase of the menstrual cycle, mimicking the in vivo glandular-like aspect and functions. Noteworthy, organoids mirroring the early secretive phase show the development of pinopodes, large cytoplasmic apical protrusions of the epithelial cells, traditionally considered as reliable key features of the implantation window. Moreover, organoids express glycodelin A (GdA), a cycle-dependent marker of the endometrial receptivity, with its quantitative and qualitative features accounting well for the profile detected in the endometrium in vivo. Accordingly, organoids deriving from the eutopic endometrium of women with endometriosis show a GdA glycosylation pattern significantly different from healthy organoids, confirming our prior data on endometrial tissues. The present results strongly support the idea that organoids may closely recapitulate the molecular and functional characteristics of their cells/tissue of origin

    Per- and poly-fluoroalkyl substances (PFASs) in follicular fluid from women experiencing infertility in Australia

    Get PDF
    Per- and poly-fluoroalkyl substances (PFASs) have been widely used and detected in human matrices. Evidence that PFAS exposure may be associated with adverse human reproductive health effects exists, however, data is limited. The use of a human matrix such as follicular fluid to determine chemical exposure, along with reproductive data will be used to investigate if there is a relationship between PFAS exposure and human fertility. Objective: This study aims to: (1) assess if associations exist between PFAS concentrations and/or age and fertilisation rate (as determined in follicular fluid of women in Australia who received assisted reproductive treatment (ART)); and (2) assess if associations exist between PFAS concentrations and infertility aetiology. Methods: Follicular fluids were originally collected from participants who underwent fully stimulated ART treatment cycles at an in vitro fertilisation (IVF) clinic in the period 2006–2009 and 2010–11 in Queensland, Australia. The samples were available for analysis of 32 PFASs including perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorohexane sulfonate (PFHxS), and perfluorononanoic acid (PFNA) using high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). 97 samples were matched with limited demographic data (age and fertilisation rate) and five infertility factors (three known female factors): 1) endometriosis, 2) polycystic ovarian syndrome (PCOS), and 3) genital tract infections - tubal/pelvic inflammation disease; as well as 4) male factor, and 5) idiopathic or unknown from either males or females. SPSS was used for linear regression analysis. Results: PFASs were detected in all follicular fluid samples with the mean concentrations of PFOS and PFOA, 4.9, and 2.4 ng/ml, respectively. A lower fertilisation rate was observed at higher age when age was added as a covariate, but there was no relationship between PFAS concentrations and fertilisation rate. There were few statistically significant associations between PFAS concentrations in follicular fluid and infertility factors. Log-transformed PFHxS concentrations were lower in females with endometriosis (factor 1) than in women who had reported ‘male factors’ as a reason of infertility, while PFHpA was higher in women who had infertile due to female factors (factor 1–3) compared to those who had infertile due to male factor. Conclusion: PFASs were detected in follicular fluid of Australian women who had been treated at an IVF clinic. PFAS exposure found in follicular fluids is linked to increased risk of some infertility factors, and increased age was associated with decreased fertilisation rate in our data. But there was no relationship between PFAS and ferlitisation rate. Further large-scale investigations of PFAS and health effects including infertility are warranted

    Telomere length and male fertility

    Get PDF
    Over the past decade, telomeres have attracted increasing attention due to the role they play in human fertility. However, conflicting results have been reported on the possible association between sperm telomere length (STL) and leukocyte telomere length (LTL) and the quality of the sperm parameters. The aim of this study was to run a comprehensive study to investigate the role of STL and LTL in male spermatogenesis and infertility. Moreover, the association between the sperm parameters and 11 candidate single nucleotide polymorphisms (SNPs), identified in the literature for their association with telomere length (TL), was investigated. We observed no associations between sperm parameters and STL nor LTL. For the individual SNPs, we observed five statistically significant associations with sperm parameters: considering a p < 0.05. Namely, ACYP2-rs11125529 and decreased sperm motility (p = 0.03); PXK-rs6772228 with a lower sperm count (p = 0.02); NAF1-rs7675998 with increased probability of having abnormal acrosomes (p = 0.03) and abnormal flagellum (p = 0.04); ZNF208-rs8105767 and reduction of sperms with normal heads (p = 0.009). This study suggests a moderate involvement of telomere length in male fertility; however, in our analyses four SNPs were weakly associated with sperm variables, suggesting the SNPs to be pleiotropic and involved in other regulatory mechanisms independent of telomere homeostasis, but involved in the spermatogenic process

    Characterization of the age-dependent changes in antioxidant defenses and protein’s sulfhydryl/carbonyl stress in human follicular fluid

    Get PDF
    The oxidative stress, characterized by the imbalance between pro-oxidants and antioxidants molecules, seems to be involved in the pathogenesis of female subfertility. In particular, the presence of different markers of oxidative stress has been reported in human follicular fluid (FF) surrounding oocytes. Based on its distinctive composition and on the close proximity to the oocyte, FF creates a unique microenvironment having a direct impact on oocyte quality, implantation, and early embryo development. An imbalance in reactive oxygen species (ROS) production in ovarian follicular fluid may have a negative effect on these processes and, as a consequence, on female fertility. Therefore, the aim of this study was to evaluate the redox state of the FF through various methodological approaches. By means of 2D-electrophoresis we demonstrated that the main structural changes occurring in the proteins of the follicular fluid of normovulatory women were correlated to the age of the patients and to the antioxidant defenses present in the FF. Measurement of these parameters could have clinical relevance, since the assessment of the oxidative stress rate may be helpful in evaluating in vitro fertilization potential. © 2020 by the authors. Licensee MDPI, Basel, Switzerland

    Main actors behind the endometrial receptivity and successful implantation

    No full text
    Embryo implantation occurs during a short period of time, the implantation window, in the mid-secretory phase of the menstrual cycle. The cross-talk between the endometrium and the embryo, at the stage of blastocyst, is a necessary condition for successful implantation. Till now, no single molecule or receptor has been identified to play an essential role on embryo implantation but a huge number of mediators, including cytokines, lipids, adhesion molecules, growth factors, and others, are reported to support the establishment of pregnancy. Therefore, the aim of this review is not only to describe the different actors involved in the implantation process, but also to try to characterize the relationships between these factors as well as their time-regulated activation. Moreover, the availability of in vitro culture systems to study the interactions between embryo and endometrium as well as the paracrine communication regulated by exosomal vesicles will be investigated, as an innovative approach for a more precise characterization of the interactions between the different molecules involved in this process. The in-depth knowledge of all these complex mechanisms will allow to address the reasons of implantation failure and infertility, thus providing new avenues for promoting the successful establishment of a pregnancy

    Expression of taste receptor 2 subtypes in human testis and sperm

    Get PDF
    Taste receptors (TASRs) are expressed not only in the oral cavity but also throughout the body thus suggesting that they may play different roles in organ systems beyond the tongue. Recent studies showed the expression of several TASRs in mammalian testis and sperm indicating an involvement of these receptors in male gametogenesis and fertility. This notion is supported by an impaired reproductive phenotype of mouse carrying targeted deletion of taste receptor genes as well as by a significant correlation between human semen parameters and specific polymorphisms of taste receptor genes. To better understand the biological and thus clinical significance of these receptors for human reproduction we analyzed the expression of several members of the TAS2Rs family of bitter receptors in human testis and in ejaculated sperm before and after in vitro selection and capacitation. Our results provide evidence for the expression of TAS2R genes with TAS2R14 being the most expressed bitter receptor subtype in both testis tissue and sperm cells respectively. In addition it was observed that in vitro capacitation significantly affects both the expression and the subcellular localization of these receptors in isolated spermatozoa. Interestingly α-gustducin and α-transducin two Gα subunits expressed in taste buds on the tongue are also expressed in human spermatozoa; moreover a subcellular redistribution of both G protein α-subunits to different sub-compartments of sperm was registered upon in vitro capacitation. Finally we shed light on the possible downstream transduction pathway initiated upon taste receptor activation in the male reproductive system. Performing ultrasensitive droplets digital PCR assays to quantify RNA copy numbers of a distinct gene we found a significant correlation between the expression of TAS2Rs and TRPM5 (r = 0.87) the cation channel involved in bitter but also sweet and umami taste transduction in taste buds on the tongue. Even if further studies are needed to clarify the precise functional role of taste receptors for successful reproduction the presented findings significantly extend our knowledge of the biological role of TAS2Rs for human male fertility

    Bitter taste receptors expression in human granulosa and cumulus cells: New perspectives in female fertility

    Get PDF
    Bitter taste receptors (TAS2RS) expression is not restricted to the oral cavity and the presence of these receptors in the male reproductive system and sperm provides insights into their possible role in human reproduction. To elucidate the potential role of TAS2Rs in the female reproductive system, we investigated the expression and localization of bitter taste receptors and the components of signal transduction cascade involved in the pathway of taste receptors in somatic follicular cells obtained from women undergoing assisted reproductive techniques. We found that TAS2R genes are expressed in both cumulus (CCs) and granulosa (GCs) cells, with TAS2R14 being the most highly expressed bitter receptor subtype. Interestingly, a slight increase in the expression of TAS2R14 and TAS2R43 was shown in both GCs and CCs in young women (p < 0.05), while a negative correlation may be established between the number of oocytes collected at the pickup and the expression of TAS2R43. Regarding α-gustducin and α-transducin, two Gα subunits expressed in the taste buds on the tongue, we provide evidence for their expression in CCs and GCs, with α-gustducin showing two additional isoforms in GCs. Finally, we shed light on the possible downstream transduction pathway initiated by taste receptor activation in the female reproductive system. Our study, showing for the first time the expression of taste receptors in the somatic ovarian follicle cells, significantly extends the current knowledge of the biological role of TAS2Rs for human female fertility
    corecore